Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.

Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems.

With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation.

Key Features

  • Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure
  • Chapters review mechanisms of hydrogen embrittlement including absorption, diffusion and trapping of hydrogen in metals
  • Analyses ways of modelling hydrogen-induced damage and assessing service life


Engineers working in the energy sector and academics interested in this important topic.

Table of Contents

Part 1 Mechanisms of hydrogen interactions with metals: Hydrogen adsorption on the surface of metals; Analysing hydrogen in metals: Bulk thermal desorption spectroscopy (TDS) methods; Analysing hydrogen in metals: Surface techniques; Hydrogen diffusion and trapping in metals; Control of hydrogen embrittlement of metals by chemical inhibitors and coatings; The role of grain boundaries in hydrogen induced cracking (HIC) of steels; Influence of hydrogen on the behavior of dislocations. Part 2 Modelling hydrogen embrittlement: Modelling hydrogen induced damage mechanisms in metals; Hydrogen effects on the plasticity of face-centred cubic (ffc) crystals; Continuum mechanics modelling of hydrogen embrittlement; Degradation models for hydrogen embrittlement; Effect of inelastic strain on hydrogen-assisted fracture of metals; Development of service life prognosis systems for hydrogen energy devices. Part 3 The future: Gaseous hydrogen embrittlement of high-performance metals in energy systems: Future trends.


No. of pages:
© 2012
Woodhead Publishing
Print ISBN:
Electronic ISBN:

About the editors

Brian Somerday

Affiliations and Expertise



This book is a worthwhile purchase for anybody with a serious interest in the area of hydrogen embrittlement. It is a valuable reference for scientists and engineers alike, whether they are university students or experienced professionals., Materials World