Gas Fluidization - 1st Edition - ISBN: 9780444883353, 9780444596628

Gas Fluidization, Volume 8

1st Edition

Authors: M. Pell
Hardcover ISBN: 9780444883353
eBook ISBN: 9780444596628
Imprint: Elsevier Science
Published Date: 20th November 1989
Tax/VAT will be calculated at check-out
72.95
43.99
54.95
214.54
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

1. Introduction to Gas Fluidization. Introduction. Regimes of fluidization. Effects of particle size and density. Effects of gas density and viscosity. References. 2. First Calculations. Average particle size. Experimental evaluation vs. calculation. Minimum fluidization velocity. Minimum bubbling velocity. Terminal velocity. Bed expansion. A second look at the minimum bubbling condition. Bed pressure drop. References. 3. Gas Distributor Design. Functions of the grid. Grid pressure drop. Hole size and number. Jet length. Particle attrition. Grid variations. Grid seals. Plenum design. References. 4. Bubble Growth and Stability. Overview. Bubble growth. Slugging. Maximum stable bubble size. Effect of bubble size on bed expansion. References. 5. Mixing and Segregation. Solids mixing. Mechanism of vertical mixing. Radial mixing. Diffusion model for solids and gas backmixing. Segregation. References. 6. Heat Transfer. Introduction. Particle to gas heat transfer. Particle to wall and tube heat transfer. Design considerations for tube banks. Radiation. Heat transfer by entrained solids. References. 7. Drying and Solvent Stripping. Introduction. The drying curve. Design considerations. Designing for residence time effects. Vibrated bed drying. Vendor assistance. References. 8. Entrainment. Introduction. Particle ejection from the bed. Transport disengaging height, TDH. Correlations for entrainment above TDH. Entrainment below TDH. References. 9. Chemical Reaction Modeling. Introduction. Historical background and evolution of the model. Description of the model. Effect of fines. Grid region effects. Freeboard region. Baffles. References. 10. Scale Up and Scale Down. Introduction. The scaleup sequence. Large scale effects. References. 11. Defluidization and Agglomeration. Introduction. Defluidization from thermal sintering. Intentional agglomeration. References. 12. Attrition in Fluidized Beds. Attrition fundamentals. Time effects on attrition. Attrition tests. Design procedures. Designing to minimize attrition. References. 13. Physical Forces. Effect on particles. Effect on internals. Effect on the vessel and associated equipment. References. Appendix: Units and Symbols. Index.

Description

1. Introduction to Gas Fluidization. Introduction. Regimes of fluidization. Effects of particle size and density. Effects of gas density and viscosity. References. 2. First Calculations. Average particle size. Experimental evaluation vs. calculation. Minimum fluidization velocity. Minimum bubbling velocity. Terminal velocity. Bed expansion. A second look at the minimum bubbling condition. Bed pressure drop. References. 3. Gas Distributor Design. Functions of the grid. Grid pressure drop. Hole size and number. Jet length. Particle attrition. Grid variations. Grid seals. Plenum design. References. 4. Bubble Growth and Stability. Overview. Bubble growth. Slugging. Maximum stable bubble size. Effect of bubble size on bed expansion. References. 5. Mixing and Segregation. Solids mixing. Mechanism of vertical mixing. Radial mixing. Diffusion model for solids and gas backmixing. Segregation. References. 6. Heat Transfer. Introduction. Particle to gas heat transfer. Particle to wall and tube heat transfer. Design considerations for tube banks. Radiation. Heat transfer by entrained solids. References. 7. Drying and Solvent Stripping. Introduction. The drying curve. Design considerations. Designing for residence time effects. Vibrated bed drying. Vendor assistance. References. 8. Entrainment. Introduction. Particle ejection from the bed. Transport disengaging height, TDH. Correlations for entrainment above TDH. Entrainment below TDH. References. 9. Chemical Reaction Modeling. Introduction. Historical background and evolution of the model. Description of the model. Effect of fines. Grid region effects. Freeboard region. Baffles. References. 10. Scale Up and Scale Down. Introduction. The scaleup sequence. Large scale effects. References. 11. Defluidization and Agglomeration. Introduction. Defluidization from thermal sintering. Intentional agglomeration. References. 12. Attrition in Fluidized Beds. Attrition fundamentals. Time effects on attrition. Attrition tests. Design procedures. Designing to minimize attrition. References. 13. Physical Forces. Effect on particles. Effect on internals. Effect on the vessel and associated equipment. References. Appendix: Units and Symbols. Index.

Details

Language:
English
Copyright:
© Elsevier Science 1990
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780444596628

About the Authors

M. Pell Author

Affiliations and Expertise

E.I. du Pont de Nemours & Co. Inc., Newark, DE, USA