
Fundamentals of Quantum Mechanics
Resources
Description
Key Features
- Accessible style and colorful illustrations make the content appropriate for professional researchers and students alike
- Presents results of quantum mechanical calculations that can be performed with readily available software
- Provides exceptionally clear discussions of spin-orbit coupling and group theory, and comprehensive coverage of barrier penetration (quantum mechanical tunneling) that touches upon hot topics, such as superconductivity and scanning tunneling microscopy
- Problems given at the end of each chapter help students to master concepts
Readership
Table of Contents
1. Origins of Quantum Theory
- Abstract
- 1.1 Blackbody Radiation
- 1.2 The Line Spectrum of Atomic Hydrogen
- 1.3 Electrons and the Nucleus
- 1.4 The Bohr Model for the Hydrogen Atom
- 1.5 The Photoelectric Effect
- 1.6 Particle-Wave Duality
- 1.7 The Heisenberg Uncertainty Principle
- Problems
2. The Methods of Quantum Mechanics
- Abstract
- 2.1 The Postulates
- 2.2 The Wave Equation
- 2.3 Operators
- 2.4 Eigenvalues
- 2.5 Wave Functions
- Problems
3. Particles in Boxes
- Abstract
- 3.1 The Particle in a One-Dimensional Box
- 3.2 Separation of Variables
- 3.3 The Particle in a Three-Dimensional Box
- 3.4 F-Centers in Crystals
- 3.5 Solvated Electrons
- Problems
4. The Hydrogen Atom
- Abstract
- 4.1 Schrödinger′s Solution to the Hydrogen Atom Problem
- 4.2 Interpreting the Solutions
- 4.3 p and d Wave Functions and Orbitals
- 4.4 Orthogonality
- 4.5 Approximate Wave Functions and the Variation Method
- Problems
5. Structure and Properties of More Complex Atoms
- Abstract
- 5.1 The Helium Atom
- 5.2 Perturbation Method
- 5.3 Slater Wave Functions
- 5.4 Electron Configurations
- 5.5 Spectroscopic States
- Problems
6. Vibrations and the Harmonic Oscillator
- Abstract
- 6.1 The Vibrating Object
- 6.2 Linear Differential Equations with Constant Coefficients
- 6.3 Back to the Vibrating Object
- 6.4 The Quantum Mechanical Harmonic Oscillator
- 6.5 Series Solutions of Differential Equations
- 6.6 Back to the Harmonic Oscillator
- 6.7 Population of States
- 6.8 Heat Capacity of Metals
- Problems
7. Molecular Rotation and Spectroscopy
- Abstract
- 7.1 Rotational Energies
- 7.2 Quantum Mechanics of Rotation
- 7.3 Heat Capacities of Gases
- 7.4 Energy Levels in Gaseous Atoms and Molecules
- 7.5 Rotational Spectra of Diatomic Molecules
- Problems
8. Bonding and Properties of Diatomic Molecules
- Abstract
- 8.1 An Elementary Look at Covalent Bonds
- 8.2 Some Simple Relationships for Bonds
- 8.3 The LCAO-MO Method
- 8.4 Diatomic Molecules of the Second Period
- 8.5 Overlap and Exchange Integrals
- 8.6 Heteronuclear Diatomic Molecules
- 8.7 Symmetry of Molecular Orbitals
- 8.8 Orbital Symmetry and Reactivity
- 8.9 Term Symbols
- Problems
9. The Hückel Molecular Orbital Method
- Abstract
- 9.1 The Hückel Method
- 9.2 Determinants
- 9.3 Solving Polynomial Equations
- 9.4 Hückel Calculations for Larger Molecules
- 9.5 Calculations Including Heteroatoms
- 9.6 Some Triatomic Inorganic Molecules
- 9.7 Kernels, Repulsion, and Stability
- 9.8 Band Theory of Metals
- Problems
10. Molecular Structure and Symmetry
- Abstract
- 10.1 Valence Bond Description of Molecular Structure
- 10.2 What Symmetry Means
- 10.3 Symmetry Elements
- 10.4 What Point Group Is It?
- 10.5 Group Theory
- 10.6 Symmetry of Molecular Orbitals
- 10.7 Molecular Orbital Diagrams
- 10.8 The Three-Center Bond
- 10.9 Orbital Symmetry and Reactivity
- Problems
11. Molecular Spectroscopy
- Abstract
- 11.1 Visible and Ultraviolet Spectroscopy
- 11.2 Electronic Transitions in Molecules
- 11.3 Photoelectron Spectroscopy
- 11.4 Determining Bond Lengths in Diatomic Molecules
- 11.5 Structure Determination
- 11.6 Types of Bonds Present
- 11.7 Solvatochromism
- 11.8 The Hydrogen Bond
- 11.9 Effects of Hydrogen Bonding on Spectra
- Problems
12. Spectroscopy of Metal Complexes
- Abstract
- 12.1 The Effect of Ligands on d Orbitals
- 12.2 Bands in Electronic Spectra of Complexes
- 12.3 Interpreting Electronic Spectra of Complexes
- 12.4 Charge Transfer Absorption
- 12.5 Back Donation
- Problems
13. Barrier Penetration
- Abstract
- 13.1 The Phenomenon of Barrier Penetration
- 13.2 The Wave Equations
- 13.3 Alpha Decay
- 13.4 Tunneling and Superconductivity
- 13.5 The Scanning Tunneling Microscope
- 13.6 Spin Tunneling
- 13.7 Tunneling in Ammonia Inversion
- Problems
14. Comments on Computational Methods
- Abstract
- 14.1 The Fundamental Problem
- 14.2 The Basis Set
- 14.3 The Extended Hückel Method
- 14.4 The Hartree-Fock Self-Consistent Field Approach
- 14.5 Density Functional Theory
- 14.6 Epilogue
- Problem
References for Further Reading
Answers to Selected Problems
- Chapter 1 Origins of Quantum Theory
- Chapter 2 Methods of Quantum Mechanics
- Chapter 3 Particles in Boxes
- Chapter 4 The Hydrogen Atom
- Chapter 5 Structure and Properties of More Complex Atoms
- Chapter 6 Vibrations and the Harmonic Oscillator
- Chapter 7 Molecular Rotation and Spectroscopy
- Chapter 8 Bonding and Properties of Diatomic Molecules
- Chapter 9 Hückel Molecular Orbital Calculations
- Chapter 10 Molecular Structure and Symmetry
- Chapter 11 Molecular Spectroscopy
- Chapter 12 Molecular Spectroscopy
- Chapter 13 Barrier Penetration
Product details
- No. of pages: 372
- Language: English
- Copyright: © Academic Press 2017
- Published: April 19, 2017
- Imprint: Academic Press
- Paperback ISBN: 9780128092422
- eBook ISBN: 9780128092552
About the Author
James House
Affiliations and Expertise
Ratings and Reviews
There are currently no reviews for "Fundamentals of Quantum Mechanics"