Free-Surface Flow

Free-Surface Flow

Environmental Fluid Mechanics

1st Edition - August 21, 2018

Write a review

  • Author: Nikolaos Katopodes
  • Paperback ISBN: 9780128154892
  • eBook ISBN: 9780128162514

Purchase options

Purchase options
Available
DRM-free (EPub, PDF, Mobi)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Free Surface Flow: Environmental Fluid Mechanics introduces a wide range of environmental fluid flows, such as water waves, land runoff, channel flow, and effluent discharge. The book provides systematic analysis tools and basic skills for study fluid mechanics in natural and constructed environmental flows. As the prediction of changes in free surfaces in rivers, lakes, estuaries and in the ocean directly affects the design of structures that control surface waters, and because planning for the allocation of fresh-water resources in a sustainable manner is an essential goal, this book provides the necessary background and research.

Key Features

  • Helps users determine the transfer of solute mass through the air-water interface
  • Presents tactics on the impact of free shear flow in the environment and how to quantify mixing mechanisms in turbulent jets and wakes
  • Gives users tactics to predict the fate and transport of contaminants in stratified lakes and estuaries

Readership

Civil and Environmental Engineering, Coastal Engineering, and Ocean Engineering

Table of Contents

  • 1. Basic Concepts

    1.1 Introduction 4

    1.1.1 Reductionism 4

    1.1.2 Free-Surface Flow Models 6

    1.2 Macroscopic Theory of Flow 10

    1.2.1 Fluid Density 10

    1.2.2 The Fluid Continuum Hypothesis 11

    1.3 Coordinate Systems 15

    1.4 The Laws of Motion 19

    1.4.1 Law of Universal Gravitation 19

    1.4.2 Prediction by Asymptotic Approximation 22

    1.4.3 Pressure Variation in a Static Fluid 23

    1.5 Inertial Frames of Reference 27

    1.5.1 Spacetime, World Lines, and Wave Surfaces 29

    1.5.2 Index Notation – The Summation Convention 31

    1.6 Euclidean Space 33

    1.6.1 Translation 33

    1.6.2 Scaling 33

    1.6.3 Reflection 33

    1.6.4 Rotation 33

    1.6.5 Direction Cosines 34

    1.6.6 Rotation in Three-Dimensional Space 35

    1.6.7 Matrices 36

    1.6.8 Determinants 37

    1.6.9 The Levi-Civita Permutation Symbol 38

    1.6.10 Index Notation – Range Convention 40

    1.7 Simple Harmonic Motion 42

    1.7.1 Exponential Representation 44

    1.7.2 Fourier Series 45

    1.7.3 Probability Density Functions 47

    1.7.4 Spectral Analysis 49

    1.8 Cartesian Vectors 52

    1.8.1 Eigenvalues and Eigenvectors 52

    1.8.2 Flux and the Scalar Product 54

    1.8.2.1 Equation of a Plane 56

    1.8.3 Vector Product 57

    1.8.4 Epsilon-Delta Identities 58

    1.8.5 Triple Products 60

    1.8.6 Orthogonal Decomposition 62

    1.9 Cartesian Tensors 63

    1.9.1 Physical Meaning of Tensors 64

    1.9.2 Quadric Cone 64

    1.9.3 Stress at a Point 66

    1.9.4 Stress on an Oblique Plane 68

    1.9.5 Plane Stress 70

    1.9.6 Principal Directions 71

    1.9.7 Hydrostatic and Deviatoric Stresses 72

    1.9.8 Elements of Tensor Algebra 73

    1.9.8.1 Addition 73

    1.9.8.2 Multiplication 73

    1.9.8.3 Contraction 73

    1.9.8.4 Symmetry 74

    1.9.8.5 Invariants 74

    1.9.9 Isotropic Tensors 75

    1.9.10 Tensors in General Coordinates 76

    1.9.10.1 Basis for Space Vectors 76

    1.9.10.2 The Dual Basis 77

    1.9.10.3 Tensor Components 77

    1.9.11 Polar and Axial Vectors 78

    1.10 Stress in a Moving Fluid 80

    1.10.1 Newton’s Law of Viscosity 80

    1.10.2 Uniform Shear Flow 81

    1.10.3 Coefficient of Dynamic Viscosity 83

    1.10.4 No-Slip Condition 84

    1.10.5 Other Flux-Gradient Laws 86

    Problems 89

    References 92

    Notes 93

    2. Kinematics, Composition, and Thermodynamics

    2.1 Introduction 96

    2.2 Scalar and Vector Fields 97

    2.2.1 Gradient of a Scalar Field 98

    2.2.2 Directional Derivative 99

    2.2.3 Divergence of a Vector Field 100

    2.2.4 Generalization of Gradient and Divergence 102

    2.2.5 Curl of a Vector Field 103

    2.2.6 Curl of a Vector Product 106

    2.2.7 Scalar Potential 107

    2.2.8 Vector Potential 109

    2.3 Curvilinear Coordinates 110

    2.3.1 Cylindrical Coordinates 110

    2.3.2 Spherical Coordinates 111

    2.4 The Laplacian 113

    2.4.1 Curvilinear Coordinates 113

    2.4.2 Vector Laplacian 114

    2.5 Material Coordinates and Derivatives 115

    2.5.1 Fluid Acceleration 118

    2.6 Pathlines and Streamlines 120

    2.6.1 Stream Surfaces and Streaklines 122

    2.6.2 Streamlines in Unsteady Flow 124

    2.7 Relative Motion in Eulerian Coordinates 127

    2.8 Space Curves 130

    2.8.1 Curvature and Principal Normal 130

    2.8.2 Natural Coordinates 133

    2.8.3 Flow in a Circular Path 135

    2.8.4 Estimation of the Radius of Curvature 136

    2.9 Integrals of Vector Fields 137

    2.9.1 The Rate of Expansion of a Material Volume 137

    2.9.2 The Divergence Theorem 138

    2.9.3 The Transport Theorem 140

    2.9.4 The Leibniz Rule 142

    2.9.5 Conservation Laws 142

    2.10 Composition 144

    2.11 Thermodynamic Relations 146

    2.12 Entropy Changes 148

    2.12.1 Statistical Definition of Entropy 148

    2.13 The Equation of State 150

    2.13.1 Ideal Gases 151

    2.13.2 Pure and Seawater 151

    2.14 First Law of Thermodynamics 154

    2.14.1 Heat Capacities 154

    2.15 Second Law of Thermodynamics 157

    2.15.1 Clausius Inequality 158

    2.15.2 The Combined Laws 161

    2.15.3 Maxwell Relations 162

    2.15.4 Isentropic Processes for Ideal Gases 163

    2.15.5 Free Energy 163

    2.15.6 Free Enthalpy 164

    2.15.7 Equation of State for Internal Energy 166

    2.16 Fluid Compressibility 167

    Problems 168

    References 171

    Note 172

    3. Diffusive Mass Transfer

    3.1 Introduction 176

    3.2 Fick’s Law of Diffusion 178

    3.2.1 The Unit Impulse Load 180

    3.2.2 Thermal Energy of Solute Particles 182

    3.2.3 Brownian Motion 186

    3.2.4 Langevin’s Equation of Motion 188

    3.2.5 A Heuristic Model for Diffusion 191

    3.3 Differential Mass Balance 194

    3.3.1 Macroscopic Mass Balance 196

    3.4 Sources and Sinks 199

    3.4.1 Distributed Source or Sink 199

    3.4.2 Point, Line, and Plane Source or Sink 200

    3.5 Sudden Release of Solute in a Channel 202

    3.5.1 Scales of the Diffusion Equation 203

    3.5.2 Dimensional Analysis 205

    3.5.3 Similarity Solution 206

    3.5.4 Properties of the Diffusion Equation 208

    3.6 The Unit Impulse Response Function 211

    3.6.1 Properties of the Unit Impulse Response Function 214

    3.6.2 Gaussian Distribution 215

    3.6.3 Non-Gaussian Distributions 216

    3.7 Continuous Injection of Mass 219

    3.7.1 Evolution of an Initial Concentration Profile 222

    3.7.2 Spatially Distributed Maintained Source 224

    3.8 The Fourier Transform 225

    3.8.1 Differential Properties 226

    3.8.2 Transform of the Diffusion Equation 226

    3.8.3 Unit Impulse Load 227

    3.8.4 Convolution 228

    3.9 Specified Concentration History 230

    3.9.1 Constant Concentration 233

    3.9.2 Linear Increase of Concentration 233

    3.9.3 Square-Root Increase of Concentration 233

    3.9.4 Exponential Increase of Concentration 233

    3.10 Diffusion Coupled With Adsorption 235

    3.10.1 Diffusion Coupled With Reaction 236

    3.11 Transform Methods for Diffusion-Reaction 237

    3.11.1 Local Transform 237

    3.11.2 Integral Transform 237

    3.11.3 Laplace Transform 238

    3.12 Inertia-Moderated Diffusion 242

    3.13 Multi-Dimensional Diffusion 245

    3.14 Boundary Conditions – Method of Images 248

    3.14.1 Two-Dimensional Problems 249

    Problems 254

    References 257

    4. Advective Mass Transfer

    4.1 Introduction 260

    4.2 Advective Mass Balance 261

    4.2.1 One-Dimensional Advection 262

    4.2.2 Depth-Averaged Advection 264

    4.2.3 Cross-Sectional Area-Averaged Advection 267

    4.3 Fourier Transform of Advection Equation 268

    4.3.1 Discrete Fourier Transform 269

    4.3.2 Discontinuous Concentration Profiles 270

    4.4 Advection Coupled With Diffusion 273

    4.4.1 Specified Upstream Concentration of an Active Solute 274

    4.4.2 Transverse Diffusion 276

    4.5 Order of Magnitude Analysis 279

    4.5.1 Steady State Analysis 280

    4.6 Mixing in Unidirectional Flow 283

    4.6.1 Fixed Sources in Unidirectional Flow 284

    4.6.1.1 Steady Point Source in an Unbounded Stream 284

    4.6.1.2 Steady Line Source in a Stream 286

    4.6.1.3 Plane Source in a Stream 290

    4.6.2 Steady-State Plane Source 291

    4.6.3 Advection-Reaction Equation 293

    4.7 Distance Required for Complete Mixing 296

    Problems 302

    References 306

    5. Viscous Fluid Flow

    5.1 Introduction 310

    5.2 Conservation of Mass – Continuity 311

    5.2.1 Incompressibility Constraint 313

    5.3 The Stream Function 316

    5.3.1 Flow Between Streamlines 317

    5.3.2 Axisymmetric Flow 318

    5.4 Conservation of Momentum 320

    5.4.1 Body Forces on a Fluid Element 320

    5.4.2 Surface Forces on a Fluid Element 322

    5.4.3 Equation of Motion 324

    5.4.4 Equation of Momentum 325

    5.5 Conservation of Energy 327

    5.5.1 Equation of Mechanical Energy 327

    5.5.2 Total Energy Equation 328

    5.5.3 Equation of Internal Energy 330

    5.6 Impact of the Velocity Field on a Fluid Element 332

    5.6.1 The Rate of Strain of a Fluid Element 334

    5.6.2 Parallel Shear Flow 336

    5.6.2.1 Strain Ellipse 336

    5.7 Evolution of a Fluid Element 339

    5.7.1 Fluid Translation 339

    5.7.2 Fluid Dilatation 339

    5.7.3 Angular Deformation 340

    5.7.4 Rotation of a Rigid Body 341

    5.7.5 Fluid Rotation 342

    5.8 Stress-Strain Rate Relation – The Stokes Hypothesis 344

    5.8.1 Pressure in a Moving Fluid 347

    5.9 The Incompressible Navier-Stokes Equations 350

    5.9.1 Pressure Poisson Equation 352

    5.9.1.1 Boundary Conditions 354

    5.9.2 Cylindrical Coordinates 356

    5.9.3 Viscous Dissipation of Energy 356

    5.9.4 An Alternative Form of the Thermal Energy Equation 358

    5.9.5 Vorticity-Stream Function Formulation 359

    5.10 Scaling the Navier-Stokes Equations 361

    5.10.1 Laminar and Turbulent Flow Regimes 363

    5.10.2 Effects of Gravity – The Froude Number 364

    5.10.3 Periodic Flow Motion – The Strouhal Number 366

    5.11 Fundamental Viscous-Flow Problems 369

    5.11.1 Flow Driven by a Moving Boundary 369

    5.11.1.1 The Rate of Energy Dissipation 371

    5.11.2 Flow Between Parallel Walls 372

    5.11.3 Two-Layer Flow Between Parallel Walls 373

    5.11.4 Unsteady Flow Problems 376

    5.11.4.1 Flow Due to a Suddenly Accelerated Plate 376

    5.11.4.2 Flow Near an Oscillating Plate 378

    5.12 Integral Equations for Fluid Flow 381

    5.12.1 Macroscopic Volume Balance 381

    5.12.2 Macroscopic Momentum Balance 382

    5.12.3 Macroscopic Energy Balance 384

    5.13 Creeping Flow 386

    5.13.1 Properties of Creeping Flow 387

    5.13.2 The Paint-Scraper Problem 388

    5.13.3 Flow Around a Sphere 390

    5.13.3.1 Pressure Distribution Around a Sphere 394

    5.13.3.2 Stress Distribution Around a Sphere 394

    5.13.4 Drag Force on Sphere 396

    5.13.5 Fall Velocity 397

    5.13.6 Oseen’s Improved Creeping Flow Approximation 397

    5.13.7 Hele-Shaw Flow 400

    5.13.7.1 Hele-Shaw Flow Around a Cylinder 401

    Problems 403

    References 406

    6. Ideal Fluid Flow

    6.1 Introduction 410

    6.2 The Velocity Potential 411

    6.2.0.1 Curvilinear Coordinates 412

    6.2.1 Equipotential Surfaces and Lines 412

    6.2.2 Harmonic Flow Fields 413

    6.2.3 The Stream Function in Irrotational Flow 414

    6.2.4 Green’s Identities 415

    6.2.5 Elliptic Boundary-Value Problems 416

    6.2.6 The Mean-Value Property 416

    6.2.7 The Free Space Function 417

    6.2.8 The Influence of a Closed Boundary 419

    6.2.9 Solution of the Dirichlet Problem 421

    6.3 Euler’s Equations 426

    6.3.1 Boundary Conditions for Ideal Fluid Flow 426

    6.3.2 The Role of Vorticity 427

    6.4 Bernoulli’s Equation for Irrotational Flow 428

    6.4.1 Bernoulli’s Equation for Steady Flow 430

    6.4.2 Bernoulli’s Equation Along a Single Streamline 430

    6.4.3 Pressure Variation Along a Streamline 431

    6.4.4 The Coanda Effect 432

    6.4.5 Draining of a Soda Straw 433

    6.5 Standard Patterns of Flow 435

    6.5.1 Uniform Flow Along the x Axis 435

    6.5.2 Uniform Flow in Arbitrary Direction 435

    6.5.3 Flow From a Line Source 436

    6.5.4 Sink With Spherical Symmetry – Collapse of a Bubble 438

    6.5.5 The Free Vortex 440

    6.5.6 Source in a Uniform Stream 441

    6.5.7 Sink and Source of Equal Strength 444

    6.5.8 The Doublet 446

    6.5.9 Rankine Oval 447

    6.5.10 Flow Past a Circular Cylinder 448

    6.5.11 The Flow Net 449

    6.5.12 Drag on Cylinder 450

    6.5.13 Unsteady Flow and Virtual Mass 452

    6.5.14 Potential Flow Past a Sphere 454

    6.6 Conformal Mapping 458

    6.6.1 Complex Variables 458

    6.6.2 Cauchy-Riemann Equations 459

    6.6.3 Complex Potential 460

    6.6.4 Conformal Transformations 461

    6.6.5 Power-Law Mapping 463

    6.6.5.1 Uniform Stream; n = 1 463

    6.6.5.2 Flow Near a Corner; n = π/α 463

    6.6.5.3 Doublet; n=−1 465

    6.6.6 Logarithmic Mapping 466

    6.6.6.1 Line Source 466

    6.6.6.2 Free Vortex 466

    6.6.6.3 Line Source Near a Corner 466

    6.6.7 Force and Moment on a Cylinder 467

    6.6.7.1 Blasius Theorem 467

    6.6.7.2 Cauchy’s Integral Theorem 469

    6.6.7.3 Cauchy’s Integral Formula 469

    6.7 Polygonal Boundaries 473

    6.7.1 Change of Direction Under Conformal Mapping 473

    6.7.2 Mapping of Polygons 475

    6.7.3 The Schwarz-Christofell Transformation 476

    6.7.3.1 Map of Semi-Infinite Channel 477

    6.7.3.2 Map of Infinite Channel 478

    6.7.4 Free Streamlines 479

    6.7.4.1 Sequential Transforms 480

    6.7.4.2 Flow Exiting Through a Sharp Orifice 481

    6.7.4.3 Contraction Coefficient 485

    Problems 486

    References 488

    7. Vorticity Dynamics

    7.1 Introduction 492

    7.1.1 Vortex Lines 492

    7.1.2 Visualization of Vorticity 493

    7.2 Vorticity in Shear Flow 495

    7.2.1 Horse-Shoe Vortex 496

    7.2.2 Vorticity in Natural Coordinates 496

    7.2.3 Circulation 498

    7.2.4 Divergence of the Vorticity Field 498

    7.3 Vortex Sheets 500

    7.3.1 Stream Induced by Vorticity 501

    7.4 Concentrated Vortices 503

    7.4.1 The Forced Vortex 503

    7.4.2 The Free (Irrotational) Vortex 505

    7.4.3 The Rankine Vortex 507

    7.5 Cellular Flows 510

    7.6 The Vorticity Transport Equation 513

    7.6.1 Diffusion of Vorticity 517

    7.6.2 Vortex Shedding 518

    7.6.3 Vortex Lines “Frozen in the Fluid” 519

    7.7 Vorticity Theorems 522

    7.7.1 Stokes’ Theorem 522

    7.7.2 Vortex Strength Theorem 523

    7.7.3 Vortex End Theorem 524

    7.7.4 Helicity 525

    7.7.5 Enstrophy 529

    7.7.6 Kelvin’s Circulation Theorem 531

    7.7.7 Conservation of Helicity 533

    Problems 535

    References 536

    8. Turbulent Flow

    8.1 Introduction 540

    8.2 Turbulent Flow 542

    8.2.1 Transition to Turbulence 542

    8.2.2 Instability of Laminar Flow 543

    8.2.3 Orr-Sommerfeld Equation for Stability 543

    8.2.4 Inviscid Instability 546

    8.2.5 Viscous Instability 547

    8.2.6 Squire’s Theorem 548

    8.2.7 Stability of Flow in Open-Channel Flow 550

    8.3 Averaging of Turbulent Flow Fields 552

    8.3.1 Velocity Fluctuations 553

    8.3.2 Correlation of Velocity Fluctuations 554

    8.3.3 Homogeneous Turbulence 555

    8.3.4 Taylor Microscale 557

    8.3.5 Isotropic Turbulence 557

    8.4 Scales of Turbulent Motion 559

    8.4.1 Kolmogorov Microscale 560

    8.4.2 Inertial Subrange 561

    8.4.3 Energy Spectrum 562

    8.4.4 Dissipation Spectrum 564

    8.4.5 Universal Equilibrium 565

    8.5 Time-Averaged Equations 568

    8.6 Transport of Reynolds Stresses 571

    8.7 Turbulence Closure Models 574

    8.7.1 Eddy Viscosity 574

    8.7.2 Mixing-Length Theory 575

    8.7.3 von Kármán’s Similarity Hypothesis 578

    8.7.4 The Viscous Sublayer 579

    8.8 Eddy Viscosity Profile 583

    8.9 Unified Model for Channel Flow 585

    8.9.1 The Buffer Region 587

    8.9.2 The van Driest Model 588

    8.9.3 Empirical Velocity Distributions 590

    8.10 Kinetic Energy-Dissipation (kt ε) Model 593

    8.10.1 Transport of TKE 593

    8.10.1.1 Homogeneous Turbulence 595

    8.10.2 Scaling Considerations 596

    8.10.3 Transport Equation for the Dissipation Rate 597

    8.10.4 Direct Numerical Simulation 600

    8.11 Large-Eddy Simulation 602

    8.11.1 Spatial Filtering 603

    8.11.1.1 Filter Properties 604

    8.11.1.2 Basic Filters 605

    8.11.2 Discrete Filtering 606

    8.11.3 Filtered Navier-Stokes Equations 608

    8.11.4 Smagorinsky Subfilter Model 610

    8.11.4.1 Effect of Boundaries 611

    8.11.5 Dynamic Smagorinsky Model 612

    8.11.6 Turbulence Model Selection 615

    Problems 617

    References 619

    Note 622

    9. Boundary-Layer Flow

    9.1 Introduction 626

    9.2 Boundary-Layer Theory 627

    9.2.1 Laminar Boundary Layer Past a Flat Plate 629

    9.2.1.1 Scaling the Boundary Layer Equations 631

    9.2.1.2 Similarity Solution 632

    9.2.1.3 Velocity Distribution 635

    9.2.2 Impact of Boundary Layer on Free Stream 637

    9.2.3 Wall Suction 639

    9.2.4 Skin Friction 640

    9.2.5 Integral Relations 642

    9.2.5.1 Zero Pressure Gradient 643

    9.2.6 Wake Downstream of a Flat Plate 645

    9.2.7 Boundary-Layer Separation 646

    9.2.8 Wake Downstream of a Bluff Body 649

    9.3 Turbulent Boundary-Layer Flow 653

    9.3.1 Turbulent Boundary-Layer Equations 655

    9.3.2 Integral Relations 656

    9.3.3 Direct Numerical Simulation 658

    9.4 Free Shear Flows 660

    9.4.1 Free Shear Layers 660

    9.4.1.1 Asymptotic Solution 662

    9.4.2 Axisymmetric Turbulent Jets 664

    9.4.2.1 Similarity Solution 666

    9.4.2.2 Axial Velocity Profile 667

    9.4.2.3 Radial Velocity 668

    9.4.3 Turbulent Axisymmetric Wake 669

    Problems 673

    References 675

    10. Geophysical Effects

    10.1 Introduction 680

    10.2 Effects of the Earth’s Rotation 682

    10.2.1 Acceleration in a Rotating Coordinate System 682

    10.2.2 Centrifugal (Fictitious) Acceleration 685

    10.2.3 Local Coordinates on a Spherical Earth 686

    10.2.4 Effective Gravity 687

    10.2.4.1 Effect of Altitude 689

    10.2.5 Coriolis Acceleration 690

    10.2.6 Fictitious Force on a Rotating Frame 691

    10.3 The Geopotential Field 693

    10.3.1 Geopotential Height 694

    10.4 Hydrostatic Equilibrium 697

    10.4.1 Pressure Variation in the Atmosphere 698

    10.4.2 Potential Temperature and Density 701

    10.4.3 Virtual Potential Temperature 702

    10.4.4 Pressure Variation in the Ocean 703

    10.4.5 The Density Scale Height 704

    10.4.6 Condition of Incompressibility 707

    10.5 The Boussinesq Approximation 709

    10.5.1 Almost Incompressible Fluids 712

    10.5.2 Thermal Energy Approximation 713

    10.6 Scales of Geophysical Flows 716

    10.6.1 Horizontal Momentum 717

    10.6.2 Vertical Momentum 719

    10.7 Simple Geophysical Flows 721

    10.7.1 Inertial Oscillations 721

    10.7.2 Geostrophic Balance 722

    10.7.3 Barotropic Flow 724

    10.7.4 Density Currents 727

    10.7.5 The Taylor-Proudman Phenomenon 728

    10.7.6 The Ekman Layer 729

    10.7.6.1 Bottom Resistance 729

    10.7.6.2 Uniform Core Flow 731

    10.7.6.3 Ekman Transport and Pumping 733

    10.7.7 Wind Stress and the Surface Ekman Layer 735

    10.7.7.1 Surface Layer Transport 737

    10.7.7.2 Surface Layer Pumping 737

    10.7.7.3 Coastal Upwelling 739

    Problems 741

    References 743

    11. Stratified Flow

    11.1 Introduction 746

    11.1.1 The Richardson Number 748

    11.2 Discrete Layer Approximation 750

    11.2.1 Viscous Flow in an Open Channel 750

    11.2.2 Dense Bottom Currents 752

    11.2.3 Wind-Driven Circulation 754

    11.3 Interfacial Stability 761

    11.3.1 Normal Mode Analysis 762

    11.3.2 Effects of Surface Tension 764

    11.3.3 Rayleigh-Taylor Instability 766

    11.3.4 Kelvin-Helmholtz instability 766

    11.4 Continuously Stratified Flow 769

    11.4.1 Internal Waves 771

    11.4.2 Periodic Internal Waves 772

    11.4.3 Internal Wave Orientation 774

    11.4.4 Uniform Stratification 776

    11.4.5 Internal Seiches 778

    11.5 Density Currents 780

    11.5.1 Arrested Density Current 781

    11.5.2 Density Currents in Stratified Flow 785

    11.6 Turbulence and Stratification 789

    11.6.1 Taylor-Goldstein Equation 789

    11.7 Reynolds-Averaged Boussinesq Equations for Stratified Flow 793

    11.7.1 Kinetic Energy of the Mean Flow 793

    11.7.2 Turbulent Kinetic Energy 794

    11.7.3 Available Potential Energy 795

    Problems 798

    References 800

    12. Turbulent Mixing and Dispersion

    12.1 Introduction 804

    12.1.1 Turbulent Mixing 804

    12.1.2 Dispersion 805

    12.1.3 Time Scale of Turbulent Diffusion 806

    12.2 Time-Averaged Equations for Mass Transport 810

    12.2.1 Length Scales of Turbulent Transport 813

    12.3 Particle Correlations in Turbulent Flow 815

    12.3.1 Lagrangian Correlations 815

    12.3.2 Lagrangian Autocorrelation Coefficient 817

    12.3.3 Lagrangian Integral Time Scale 819

    12.3.4 Eddy Diffusion Coefficient 820

    12.3.5 Turbulent Diffusion in Three Dimensions 821

    12.4 Relative Diffusion of Fluid Particles 823

    12.4.1 Small Times 825

    12.4.2 Intermediate Times 828

    12.4.3 Large Times 829

    12.5 Shear Dispersion 831

    12.5.1 Dispersion in Parallel Shear Flow 831

    12.5.2 Evolution of the Spatial Variance 832

    12.5.2.1 Average Concentration 834

    12.5.2.2 Center of Mass 836

    12.5.2.3 Spatial Variance 837

    12.5.2.4 Infinitely Deep Channel 837

    12.6 Dispersion in Shallow Water 839

    12.6.1 Vertical Mixing in Open Channels 839

    12.6.2 Depth-Averaged Laminar Flow 842

    12.6.3 Dispersion in Laminar Channel Flow 844

    12.6.4 Advection-Dispersion Equation 848

    12.6.5 Dispersion in Turbulent Channel Flow 849

    12.6.6 Time Scales for Dispersion 852

    12.6.7 Dispersion in Two-Dimensional Flow 853

    12.6.8 Dispersion in Section-Averaged Flow 855

    12.6.9 The Transverse Mixing Coefficient 856

    12.6.10 Section-Averaged Dispersion Coefficient 858

    12.6.11 Dispersion in a Tidal Estuary 860

    Problems 863

    References 865

    13. Optimal Design and Flow Control

    13.1 Introduction 870

    13.1.1 Constrained Optimization 871

    13.1.2 Optimization Methods 872

    13.2 Gradient-Based Methods 874

    13.2.1 Steepest Descent 875

    13.2.1.1 The Rosenbrock Function 877

    13.2.2 Newton’s Method 878

    13.2.3 Quasi-Newton Methods 880

    13.2.4 Secant Method (BFGS) 880

    13.2.5 Hessian Update 881

    13.3 Conjugate Gradient Method 884

    13.3.1 Line Search 884

    13.3.2 Conjugate Gradient 884

    13.4 Adjoint Problem Formulation 887

    13.4.1 Optimal Source Placement 888

    13.4.2 Adjoint Equation 890

    13.4.3 Dual Functional 891

    13.4.4 Time Dependent Source 891

    13.4.5 Variational Approach 895

    13.4.5.1 Main Problem 895

    13.4.5.2 Adjoint Problem 896

    13.4.6 Sensitivity 897

    13.5 Generalized Adjoint Problem 899

    13.5.1 Construction of Adjoint Problem 901

    13.5.2 Optimal Release Sequence in Shallow Water 902

    13.5.3 Uncertainty Analysis 906

    13.6 Estimation of Dispersion Coefficients 908

    13.7 Source Inversion 910

    13.7.1 Importance of the Péclet Number 913

    13.7.2 Time Dependent Sources 915

    13.8 Active Control of Solute Slugs and Plumes 917

    13.8.1 Adjoint Problem Formulation 918

    13.8.2 Control of Two-Dimensional Slug 920

    13.8.3 Control of Three-Dimensional Slug 921

    Problems 925

    References 927

    Epilogue 929

    Note 930

    Bibliography 931

    Index 935

Product details

  • No. of pages: 1020
  • Language: English
  • Copyright: © Butterworth-Heinemann 2018
  • Published: August 21, 2018
  • Imprint: Butterworth-Heinemann
  • Paperback ISBN: 9780128154892
  • eBook ISBN: 9780128162514

About the Author

Nikolaos Katopodes

Nikolaos D. Katopodes, University Michigan Ann Arbor, Department of Civil & Environmental Engineering, Ann Arbor, United States. Dr. Katopodes has chaired or co-chaired 28 PhD student theses. His research has resulted in over 200 publications, and several software packages that are used worldwide for the analysis and control of free-surface flows.

Affiliations and Expertise

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA

Ratings and Reviews

Write a review

Latest reviews

(Total rating for all reviews)

  • Yi C. Tue May 24 2022

    A good book

    I used this book for my graduate study and class. This was a very good text book for people who want to learn more about Fluid Mechanics or want to build a solid foundation. To get the most out of the book, I'd recommend one to spend some time on calculas and derive the equations with the book.