
Free-Surface Flow
Computational Methods
Description
Key Features
- Provides numerical solutions of the turbulent Navier-Stokes equations in three space dimensions
- Includes closure models for turbulence, such as Reynolds-Averaged Navier-Stokes, and Large Eddy Simulation
- Practical applications are presented for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow
Readership
Civil and Environmental Engineering, Coastal Engineering, and Ocean Engineering
Table of Contents
1. Basic Concepts
1.1 Introduction 4
1.1.1 “Newton’s Rules” for Computational Modeling 5
1.1.2 Computational Models 6
1.2 The Taylor Series 9
1.3 Finite-Difference Approximations 14
1.3.1 Forward Differences 15
1.3.2 Backward Differences 16
1.3.3 Central Differences 16
1.3.4 Second-Order, One-Sided Differences 17
1.3.5 Identity and Shift Operators 18
1.3.6 Linear Difference Equations 18
1.4 Initial-Value Problems for ODE’s 21
1.4.1 Basic Numerical Models 22
1.4.2 Truncation Error and Order of Accuracy 23
1.4.3 Stability, Consistency, and Convergence 24
1.4.4 Absolute Stability 26
1.4.5 Runge-Kutta Methods 29
1.4.6 Linear Multi-Step Methods 34
1.4.7 Backward-Difference Methods 36
1.5 Boundary-Value Problems 39
1.5.1 Steady-State Diffusion 39
1.5.2 Solution of a Tri-Diagonal System 40
1.5.3 The Thomas Algorithm 44
1.5.4 Natural Boundary Conditions 45
1.5.5 Variable Grid Computations 46
1.6 Error Norms 49
1.7 Algorithmic Dissipation 51
1.7.0.1 Backward Difference Model 52
1.7.1 Damping Effect of 2nd Derivative Operator 53
1.7.2 Order of Dissipation 54
1.7.3 Algorithmic Dispersion 54
1.8 von Neumann Stability Analysis 57
1.8.1 Representation of Oscillatory Data – Wave Aliasing 58
1.8.2 Discrete Fourier Series Representation 60
1.8.3 The Fourier Symbol 61
1.8.4 Temporal Evolution 62
1.8.5 Propagation Factor 64
1.8.6 Algorithmic Dissipation – Condition for Stability 65
1.8.7 Algorithmic Celerity – Dispersion 66
1.8.8 Algorithmic Portrait 66
1.8.9 Construction of Phase and Amplitude Graphs 67
1.8.10 PDE’s With Variable Coefficients 69
1.9 Stability, Consistency, and Convergence 71
1.9.1 Positivity and Monotonicity 71
1.10 Least-Squares Approximation 74
Problems 76
References 79
2. Finite-Difference Methods for Diffusion
2.1 Introduction 82
2.2 Explicit Scheme for Diffusion (FTCS) 84
2.2.1 Results and Error Estimates 86
2.2.2 Stability 88
2.2.3 Propagation of Information 88
2.2.4 Discretization of Discontinuous Initial Data 90
2.2.5 Boundary Effects 92
2.2.6 Natural Boundary Conditions 92
2.2.7 Simulation of a Point Source 93
2.2.8 Accuracy of FTCS Scheme 94
2.3 Oscillatory Initial Data and Spurious Signals 96
2.3.1 Spurious Waves 97
2.3.2 Stability of FTCS Scheme 98
2.4 Leapfrog Scheme 102
2.4.1 Stability Analysis of Leapfrog Scheme 103
2.5 du Fort-Frankel Scheme 105
2.6 Implicit Scheme for Diffusion 107
2.6.1 Natural Boundary Conditions 108
2.6.2 Accuracy of BTCS Scheme 109
2.6.3 Stability of BTCS Scheme 109
2.7 Crank-Nicolson Implicit Scheme 111
2.7.1 Stability of Crank-Nicolson Scheme 112
2.7.2 Weighted Average Explicit-Implicit Scheme 112
Problems 115
References 117
3. Finite-Difference Methods for Advection
3.1 Introduction 120
3.2 The Numerical Method of Characteristics 122
3.2.1 Curvilinear Characteristic Network 123
3.2.2 Characteristic Scheme on a Cartesian Grid 126
3.2.3 The Effect of Interpolation 128
3.3 Explicit Upwind Scheme (FTBS) 130
3.3.1 Accuracy of Upwind Scheme 131
3.4 The Courant-Friedrichs-Lewy (CFL) Condition 137
3.4.1 Stability of Explicit Upwind Scheme 138
3.5 Centered Explicit Scheme (FTCS) 140
3.6 Implicit Upwind Scheme (BTBS) 142
3.6.1 Stability of the BTBS Scheme 143
3.7 Lax-Friedrichs Scheme 146
3.7.1 Stability Analysis 147
3.8 Leapfrog Scheme 150
3.8.1 Propagation Properties 151
3.8.2 Stability Analysis 153
3.8.3 Dispersion Control 156
3.8.3.1 Leapfrog-Trapezoidal Scheme 157
3.8.3.2 Leapfrog-RAW Scheme 157
3.9 The Lax-Wendroff Scheme 161
3.9.1 Fourier Analysis of Lax-Wendroff Scheme 163
3.9.2 Two-Step Lax-Wendroff-Richtmyer Scheme 164
3.10 Beam and Warming Scheme 166
3.10.1 Stability Analysis 167
3.11 Parasitic Waves, Dissipation, and Dispersion 169
3.11.1 Leapfrog Scheme 170
3.11.2 Lax-Wendroff Scheme 171
3.11.3 Frequency Analysis 172
3.11.4 Group Velocity 175
3.12 Advection Coupled With Diffusion 179
3.12.1 Steady State Solution 181
3.12.2 Generalized Upwind Method 184
3.13 Transient Advection-Diffusion Schemes 188
3.13.1 Centered Explicit Scheme 188
3.13.2 Crank-Nicolson Scheme 191
3.13.3 Stability of Crank-Nicolson Scheme 192
3.13.4 Boundary Conditions 192
Problems 195
References 197
4. Finite-Element and Finite-Volume Methods for Scalar
Transport
4.1 Introduction 200
4.1.1 Variational Principles 200
4.1.1.1 Functional for Steady State Diffusion 201
4.2 The Finite-Element Method (FEM) 203
4.2.1 Basis Functions 204
4.2.2 FEM Approximation of the Functional 205
4.3 Method of Weighted Residuals 207
4.3.1 Optimal Least-Squares Distance 207
4.3.2 Inner Product Space 208
4.3.3 Minimization of the Finite-Element Residual 209
4.3.4 Linear Finite Elements 210
4.3.5 Local Coordinates 211
4.4 Diffusion Matrix and Load Vector 213
4.5 Finite-Element Model for Transient Diffusion 217
4.5.1 Time Domain Discretization 218
4.6 Finite-Element Model for Advection 221
4.6.1 Semi-Discrete Form 222
4.6.2 Advection of a Sharp Concentration Front 223
4.7 Petrov-Galerkin Modification 226
4.7.1 Dissipative Galerkin Model 228
4.7.2 Fourier Stability Analysis 229
4.7.3 Phase and Amplitude Portraits 230
4.7.4 Anti-Dissipative Behavior 231
4.7.5 Preserving Monotonicity 233
4.7.6 Selective Dissipation and Shock Capturing 235
4.7.7 Fully Discrete Monotone DG Model 237
4.8 Finite-Volume Method for Diffusion 239
4.9 Finite Volume Method for Advection 241
4.9.1 Conservative Fluxes 242
4.9.2 Upwind Finite Volume Scheme 244
4.9.3 QUICK Scheme for Advection 244
4.10 Total Variation Diminishing 247
4.11 Superbee Limiter for Advection 248
4.11.1 Comparison With the Petrov-Galerkin Finite-Element
Model 249
4.12 Discontinuous Galerkin Method 252
4.12.1 Linear Advection Equation 254
4.12.2 Stability Analysis 255
Problems 257
References 258
5. Finite-Difference Methods for Equilibrium Problems
5.1 Introduction 262
5.2 Domain Discretization 263
5.2.1 Choice of Computational Nodes 267
5.3 Equilibrium Problems 269
5.3.1 Finite-Difference Solution of Laplace’s Equation 270
5.3.2 Sources and Anisotropic Media 271
5.3.3 Natural Node Ordering 272
5.3.4 The Right Hand Side Vector 273
5.3.5 The Coefficient Matrix of the Discrete Laplacian 274
5.3.6 Fast Poisson Solvers 275
5.3.7 The Residual Equation 276
5.4 Iterative Solution of Sparse Systems 278
5.4.1 Relaxation Methods 278
5.4.2 Over Relaxation 282
5.4.3 Application of SOR to a Square Domain 283
5.4.4 Convergence of the Iterations 284
5.4.5 The Spectral Radius 286
5.4.6 Optimum Relaxation Factor 287
5.4.7 Comparison of Relaxation Methods 289
5.4.8 Impact of Problem Size 290
5.5 Optimization Methods for Solving Sparse Systems of Linear
Equations 292
5.5.1 Conjugate Gradient Method 293
5.6 Matrix Preconditioning 296
5.6.1 Preconditioned Conjugate Gradient Method 296
5.6.1.1 Incomplete Factorization 296
5.6.1.2 LDU Factorization 299
5.6.2 Incomplete Factorization 300
5.6.3 Incomplete Cholesky Factorization Algorithm 301
5.6.4 Preconditioned Conjugate Gradient Method 302
5.6.5 Modified Incomplete Cholesky Factorization 304
5.6.6 Convergence Tests 308
5.7 Multigrid Methods 310
5.7.1 Diffusion of Iteration Error 310
5.7.2 Eigenvalues of the Iteration Matrix 313
5.7.2.1 Higher Dimensions 316
5.7.3 Modes of the Jacobi Iteration 319
5.7.4 Behavior on Coarse Grid 322
5.7.5 Elements of Multigrid Method 323
5.7.6 Inter-Grid Operations 324
5.7.6.1 Prolongation 324
5.7.7 Restriction 326
5.7.8 Cycling Schemes 327
5.7.9 Multigrid Solution of Laplace Equation 330
5.8 Multi-Domain Methods 332
5.8.1 Schwarz Alternating Method 332
5.8.1.1 General Boundary Conditions 333
5.8.2 Steklov-Poincaré Method 334
5.8.3 Schur Complement and Iterative Substructuring 336
5.9 Irregular Boundaries 338
5.9.1 Dirichlet Boundaries 338
5.9.2 Neumann Boundaries 341
Problems 345
References 348
6. Methods for Two-Dimensional Scalar Transport
6.1 Introduction 352
6.2 Finite-Difference Models for Diffusion 353
6.2.1 Explicit Method (FTCS) for Diffusion 353
6.2.2 Stability of 2D-FTCS 355
6.2.2.1 The Relaxation Analogy 356
6.2.3 Alternating Direction Implicit (ADI) Scheme 356
6.2.4 Stability of ADI Scheme 359
6.3 Finite-Difference Models for Advection 360
6.3.1 The Method of Characteristics for 2D Advection 360
6.3.2 Stability of 2D Method of Characteristics 363
6.3.3 Upwind Method (FTBS) for Advection 365
6.3.4 Stability of 2D-Upwind Scheme for Advection 366
6.3.5 Modified Equation of the Upwind Scheme 369
6.3.6 2D Lax-Friedrichs Scheme 371
6.3.7 Stability Analysis of Lax-Friedrichs Scheme 372
6.3.8 2D Lax-Wendroff Scheme 372
6.3.9 Stability Analysis of 2D Lax-Wendroff Scheme 374
6.4 Advection Coupled With Diffusion 377
6.4.1 Stability of Crank-Nicolson Scheme 377
6.4.2 Cross-Wind Diffusion 380
6.5 Finite-Element Analysis 383
6.5.1 Two-Dimensional Shape Functions 385
6.6 Galerkin Formulation 388
6.6.1 Transformation of Shape Function Derivatives 389
6.6.2 Transformation of Integrals to Local Coordinates 390
6.6.3 Finite Element Equations 390
6.6.4 Gaussian Quadrature 391
6.6.4.1 Transient Advection-Diffusion Problems 392
6.6.5 Petrov-Galerkin Approximation 393
6.6.6 Large-Scale Applications 395
Problems 400
References 402
7. Methods for Open-Channel Flow
7.1 The Method of Characteristics 406
7.1.1 Kinematic Waves 406
7.1.2 Kinematic Shock Model 408
7.1.3 Dynamic Waves 409
7.1.4 Massau’s Method 412
7.1.5 Moving Boundaries 415
7.1.6 Hartree’s Method 416
7.1.6.1 Moving Boundaries 418
7.1.6.2 Shock Fitting 419
7.2 Finite-Difference Methods 420
7.2.1 Naive FTCS Scheme 420
7.2.1.1 Boundary Conditions 421
7.2.1.2 Stability Analysis 423
7.2.2 Lax-Friedrichs Scheme 425
7.2.3 Lax-Wendroff Scheme 426
7.2.3.1 Two Step Version of LW Scheme 427
7.2.3.2 Boundary Conditions 428
7.2.3.3 Stability Analysis 429
7.2.4 The Preissmann Implicit Scheme 431
7.2.4.1 Double Sweep Method 434
7.2.4.2 Stability Analysis 436
7.2.5 Implicit ENO Method 437
7.2.5.1 Computational Results 439
7.3 FEM for Open-Channel Flow 441
7.3.1 Bubnov-Galerkin Method (BG) 443
7.3.1.1 Computational Results 445
7.3.1.2 Stability Analysis 446
7.3.2 Taylor-Galerkin Method 449
7.3.2.1 Stability Analysis 452
7.3.3 Petrov-Galerkin Method 453
7.3.4 Dissipative Galerkin Scheme (DG) 456
7.3.4.1 Stability Analysis 457
7.3.5 Characteristic Galerkin Scheme (CG) 460
7.3.5.1 Stability Analysis 461
7.3.6 Comparative Analysis of Petrov-Galerkin Schemes 462
7.4 Finite-Volume Methods for Open-Channel Flow 466
7.4.1 The Riemann Problem 467
7.4.2 Numerical Flux Functions 468
7.4.3 Transcritical Depression Waves 471
7.4.4 Source Term Discretization 472
7.4.5 Extension to Second Order Accuracy 474
7.4.6 Flux Limiting 476
7.4.7 Stability Analysis 477
7.4.8 Computational Results 478
7.4.9 Zero-Inertia Deforming-Cell Model 479
7.4.9.1 Inflow Boundary 482
7.4.9.2 Surge Front 482
7.5 Dispersive Waves 484
7.5.1 Stability Analysis 486
7.5.2 Computational Results 487
7.5.3 Serre Equations 490
7.5.4 Finite-Volume Methods 491
Problems 493
References 495
8. Methods for Two-Dimensional Shallow-Water Flow
8.1 Introduction 502
8.2 The Numerical Method of Bicharacteristics 504
8.2.1 Parametric Form of Characteristic Relations 504
8.2.2 Direct Tetrahedral Network 505
8.2.3 Inverse Tetrahedral Network 506
8.2.4 Inverse Pentahedral Network 508
8.2.4.1 Discrete Compatibility Equations 511
8.2.4.2 Predictor Step 512
8.2.4.3 Corrector Step 513
8.2.4.4 Bicharacteristic Tangency Condition 515
8.2.4.5 Bivariate Interpolation of Initial Data 516
8.2.4.6 Stability Analysis 518
8.2.4.7 Moving Grid Algorithm 521
8.2.4.8 Boundary Conditions 523
8.2.4.9 Computational Results 524
8.3 Finite-Difference Models 526
8.3.1 Leendertse Scheme 526
8.3.1.1 Stability Analysis 529
8.3.2 Computational Results 531
8.3.3 MacCormack Scheme 532
8.3.3.1 Boundary Conditions 533
8.3.3.2 Stability Analysis 535
8.3.3.3 Computational Results 535
8.4 Finite-Element Models 537
8.4.1 Deforming Element Formulation 538
8.4.2 The Dissipative Interface 540
8.4.3 Deforming Flow Domain 543
8.4.4 Computational Results 544
8.5 Finite-Volume Models 546
8.5.1 Structured Grid Model 547
8.5.2 The MUSCL Scheme for Two-Dimensional Flow 550
8.5.3 Boundary Conditions 553
8.5.4 Source Term Discretization 554
8.5.4.1 Hydrostatic Imbalance 555
8.5.5 Critical Flow Sections 556
8.5.6 Stability Analysis 556
8.5.7 Wave Propagation on Dry Terrain 557
8.5.7.1 Steep Slopes With Low Runoff 559
8.5.8 Computational Results 560
Problems 564
References 565
9. Methods for Incompressible Viscous Flow
9.1 Introduction 570
9.2 Projection Method 575
9.2.1 2D Staggered Grid Discretization 577
9.2.2 Time Integration 578
9.2.2.1 Stability Condition 579
9.2.2.2 Semi-Implicit Formulation 580
9.2.3 Spatial Discretization 580
9.2.3.1 Averaging Errors 581
9.2.4 Upwinding of Advective Terms 582
9.2.5 Boundary Conditions 583
9.2.6 Computational Results 584
9.2.7 Higher-Order Projection methods 585
9.2.7.1 Block LU Factorization 587
9.2.7.2 Strong-Stability-Preserving Methods 589
9.3 Finite-Element Methods 591
9.3.1 Mixed Element Formulation 592
9.3.2 Lagrange Multiplier Approach 595
9.3.3 Penalty Methods 596
9.3.4 Artificial Compressibility 598
9.4 Finite-Volume Methods 600
9.4.1 Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) 600
9.4.1.1 SIMPLE Algorithm 602
9.4.2 FVM on Collocated Grids 605
9.4.3 Pressure-Implicit With Splitting of Operator (PISO) 607
9.4.3.1 PISO Algorithm 608
9.4.3.2 Stability Analysis 609
Problems 612
References 613
10. Deforming Grid Methods
10.1 Introduction 616
10.2 Finite-Difference Projection Method 619
10.2.1 Flow With Small Density Gradients 619
10.2.2 Staggered Spatial Discretization 620
10.2.3 Computational Results 624
10.3 FEM for Ideal Fluid Flow 628
10.3.1 Finite-Element Solution 630
10.3.1.1 Backwater Subdomain 631
10.3.1.2 Tailwater Subdomain 632
10.4 FEM for Viscous Flow 638
10.4.1 Boundary Conditions 639
10.4.2 Steady, Two-Dimensional Flow 641
10.4.2.1 Domain Discretization 641
10.4.2.2 Method of Weighted Residuals 642
10.4.2.3 Local Coordinates 643
10.4.2.4 Formulation of Global Matrices 644
10.4.2.5 Computation of Free-Surface 646
10.4.2.6 Computational Results 650
10.4.3 Unsteady Viscous Flow 653
10.4.3.1 Formulation of Residuals 653
10.4.3.2 Time Integration Scheme 655
10.4.3.3 Unsteady Flow Simulations 656
10.4.4 Extended Finite Element Method 660
10.4.5 Three-Dimensional Deforming FEM 662
10.4.5.1 Upstream Weighting 665
10.4.5.2 Deforming Element Formulation 667
10.4.5.3 Evaluation of Element Matrices 667
10.4.5.4 Nonlinear System Solver 669
10.4.5.5 Computational Results 670
10.4.6 ALE FEM in Three Dimensions 671
10.5 Structured Finite-Volume Method 674
10.5.1 Conservation Form of Equations 674
10.5.2 Velocity of Nodal Motion 675
10.5.3 Finite Volume Equations 676
10.5.4 Time Integration 678
10.5.4.1 Free Surface Elevation 679
10.5.4.2 The Dynamic Pressure Solver 681
10.5.5 Scalar Transport 683
10.5.6 Spatial Discretization 684
10.5.7 Computational Results 685
10.6 Unstructured Large-Scale Models 691
10.6.1 Vertical Coordinates 691
10.6.2 Governing Equations 693
10.6.3 z-Level Unstructured Grid 694
10.6.4 Numerical Algorithm 697
10.6.4.1 Drag Boundary Conditions 698
10.6.5 Discrete Continuity Equation 699
10.6.6 Advection of Momentum 699
10.6.6.1 Horizontal Diffusion of Momentum 702
10.6.6.2 Non-Hydrostatic Pressure 703
10.6.6.3 Discretized Transport Equations 704
10.6.6.4 Stability Conditions 705
10.6.7 Computational Results 706
Problems 708
References 709
11. Marker and Cell Method
11.1 Introduction 714
11.2 Particle-In-Cell Method 716
11.2.1 Computational Results 718
11.3 Marker-And-Cell Method 719
11.3.1 2D MAC Method 719
11.3.2 Initial and Boundary Conditions 723
11.3.2.1 Inflow Boundary 724
11.3.2.2 Outflow Boundary 725
11.3.2.3 Free-Slip Wall Boundary 725
11.3.2.4 No-Slip Wall Boundary 725
11.3.2.5 Permeable Wall Boundary 726
11.3.2.6 Corner Boundary 726
11.3.2.7 Free-Surface Boundary 727
11.3.3 Modified Free-Surface Condition 731
11.3.4 Particle Movement 733
11.3.5 The Overall Algorithm 734
11.3.6 Stability Conditions 735
11.3.7 Laminar Flow Applications 736
11.4 Turbulent Flow Simulation 739
11.4.1 The Donor Cell Upwind Scheme 742
11.4.1.1 Boundary Conditions for Turbulent Flow 744
11.4.2 Turbulent Flow Applications 745
11.5 Semi-Implicit MAC Method 748
11.5.0.1 Streamwise Momentum Equation 748
11.5.0.2 Vertical Momentum Equation 751
11.5.1 Enforcement of Incompressibility 754
11.6 Extension to Inclined Channels 755
11.6.0.1 Particle Movement 756
11.6.0.2 Computational Results 757
11.7 Recent Developments 760
Problems 763
References 764
12. Volume of Fluid Method
12.1 Introduction 768
12.2 Simple Line Interface Calculation 770
12.3 Fractional Volume of Fluid 772
12.3.1 Pressure Definition in a Surface Cell 773
12.3.2 Advection of Fractional Volume of Fluid 774
12.3.3 Subgrid Computations 778
12.3.3.1 Computational Results 778
12.3.4 Piece-Wise Linear Interface Calculation 779
12.3.4.1 The Interface Normal 781
12.3.5 Intersection With Cell Edges 782
12.4 Analytical Reconstruction Methods 785
12.4.0.1 Interface Position 786
12.4.1 Lagrangian Advection of the Interface 789
12.4.2 Extension to Three Dimensions 790
12.4.3 Computational Results 793
12.4.4 Eulerian Advection of the Interface 793
12.4.4.1 Sudden Closing of Sluice Gate 793
12.4.4.2 Fluid-Structure Interaction 795
12.4.4.3 Two-Phase Flow: Breaking Waves 796
12.4.4.4 Two-Phase Flow: Bubble Formation 796
Problems 801
References 802
13. Level Set Method
13.1 Introduction 806
13.2 Implicit Surfaces 807
13.3 Level Set Method 808
13.3.1 The Level Set Function 808
13.3.2 Evolution of the Level Set Function 810
13.3.3 Free-Surface Thickness 810
13.3.4 The Signed Distance Function 811
13.3.5 Re-Initialization of the Level Set Function 813
13.3.5.1 Smoothing the Signed Distance Function 815
13.4 WENO Scheme for Interface Advection 816
13.5 Computational Results 819
13.5.0.1 Multi-Marker, Level Set Method 819
13.5.0.2 Iso-Geometric Analysis Model 820
13.5.0.3 Immersed Boundary – Level Set Method 821
13.5.1 Comparison of Volume of Fluid and Level Set Methods 824
Problems 826
References 828
14. Smoothed Particle Hydrodynamics
14.1 Introduction 832
14.2 Integral Representation of Fluid Properties 834
14.2.1 Selection of SPH Kernel 834
14.2.2 Approximate Kernel Functions 835
14.2.3 Accuracy of SPH Approximation 837
14.2.4 Evaluation of Derivatives 838
14.3 Summation Representation of Fluid Properties 839
14.3.1 Summation Representation of Derivatives 840
14.4 SPH for Viscous Flow 843
14.4.1 Conservation of Mass 843
14.4.2 Conservation of Momentum 844
14.4.2.1 Viscosity Models 845
14.4.2.2 Artificial Viscosity 845
14.4.2.3 Equation of State 846
14.4.3 Adaptive Smoothing Length 847
14.5 Boundary Conditions 848
14.5.1 No-Slip Wall Boundary 848
14.5.2 Free-Slip Wall Boundary 849
14.5.3 Free Surface Boundary 849
14.6 Propagation of Particles 850
14.6.0.1 Stability Conditions 851
14.6.1 Enhanced SPH Methods 852
14.7 Practical Implementation 855
14.8 Computational Results 857
14.8.1 Two-Dimensional Dam-Break Wave 857
14.8.2 Impact and Ricochet of Plunging Jet 857
14.8.3 Ice-Shelf Dynamics 859
14.8.4 Three-Dimensional Dam-Break Model 860
14.8.5 Simulation of Spillway Flow 863
14.8.6 Combined SPH and Level Set Method 863
Problems 865
References 866
Epilogue 867
Note 869
Bibliography 871
Index 875
Product details
- No. of pages: 914
- Language: English
- Copyright: © Butterworth-Heinemann 2018
- Published: October 31, 2018
- Imprint: Butterworth-Heinemann
- Paperback ISBN: 9780128154854
- eBook ISBN: 9780128154861