COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Fractal Analysis of the Binding and Dissociation Kinetics for Different Analytes on Biosensor Surfaces - 1st Edition - ISBN: 9780444530103, 9780080555010

Fractal Analysis of the Binding and Dissociation Kinetics for Different Analytes on Biosensor Surfaces

1st Edition

0.0 star rating Write a review
Authors: Ajit Sadana Neeti Sadana
Hardcover ISBN: 9780444530103
eBook ISBN: 9780080555010
Imprint: Elsevier Science
Published Date: 20th November 2007
Page Count: 372
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Biosensors are finding increasing applications in different areas. Over the last few years the areas where biosensors may be used effectively has increased dramatically. This book like the previous four books on analyte-receptor binding and dissociation kinetics by this author addresses the often neglected area. The kinetics of binding and dissociation in solution to appropriate receptors immobilized on biosensor surfaces occurs under diffusional limitations on structured surfaces. The receptors immobilized on the biosensor surface contribute to the degree of heterogeneity on the sensor chip surface.
The fractal analysis examples presented throughout the book provide a convenient means to make quantitative the degree of heterogeneity present on the sensor surface, and relates it to the binding and dissociation rate coefficients. The fractal dimension is a quantitative measure of the degree of heterogeneity present on the biosensor surface. The book emphasizes medially-oriented examples. The detection of disease-related analytes is also emphasized. The intent being that if intractable and insidious diseases are detected earlier, they will be controlled better, eventually leading to a better prognosis. Chapter 3 is a new chapter that emphasizes enhancing the relevant biosensor performance parameters such as sensitivity, stability, selectivity, response time, etc.
As usual, as done in previous books by this author, the last chapter provides an update of the economics involved in biosensors, and the difficulties encounters in starting-up a biosensor company.

Key Features

  • Modelling of binding and dissociation kinetics of analyte-receptor reactions on biosensor surfaces: provides physical insights into these reactions occurring on biosensor surfaces. Very few researchers even attempt to analyze the kinetics of these types of reactions.
  • Fractal analysis used to model the binding and dissociation kinetics: original and unique approach.
  • Economic analysis provided in the last chapter: helps balance the book; besides providing much-needed information not available in the open literature.
  • Emphasis on improving biosensor performance parameters: helps make biosensors better.
  • Empahsis on medically-related analytes: helps in prognosis of diseases.


This book is suitable for academic researchers, industrial researchers, military, homeland security, other governmental and private industries.

Table of Contents


  1. Introduction
  2. Modeling and Theory
  3. Biosensor Performance Parameters and their Enhancement
  4. Fractal Analysis of Harmful Bacteria, Toxins, and Pathogen Detection on Biosensor Surfaces
  5. Fractal Binding and Dissociation Kinetics of Disease-Related Compounds on Biosensor Surfaces
  6. Fractal Analysis of Binding and Dissociation of Analytes that Help Control Diseases on Biosensor Surfaces
  7. Fractal Analysis of Binding and Dissociation of Small Molecules Involved in Drug Discovery on Biosensor Surfaces
  8. Fractal Binding and Dissociation Kinetics of Prion-Related Interactions on Biosensor Surfaces
  9. Fractal Analysis of Binding and Dissociation of DNA-Analyte Interactions on Biosensor Surfaces
  10. Fractal Analysis of Binding and Dissociation of Protein-Analyte Interactions on Biosensor Surfaces
  11. Fractal Analysis of Different Compounds Binding and Dissociation Kinetics on Biosensor Surfaces
  12. Fractal Analysis Of Binding And Dissociation Kinetics of Environmental Contaminants and Explosives on Biosensor Surfaces
  13. Market Size and Economics for Biosensors


No. of pages:
© Elsevier Science 2008
20th November 2007
Elsevier Science
Hardcover ISBN:
eBook ISBN:

About the Authors

Ajit Sadana

Dr. Ajit Sadana has recently retired from the University of Mississippi after 34 years. His expertise is in the area of kinetics of binding and dissociation of analytes on biosensor surfaces.

Affiliations and Expertise

Chemical Engineering Department, University of Mississippi, MS, USA

Neeti Sadana

Dr. Neeti Sadana is an Associate Professor and Section Chief at the University of Oklahoma.

Affiliations and Expertise

Department of Anesthesiology, Oklahoma School of Medicine, Oklahoma University, Oklahoma City, USA

Ratings and Reviews