Description

The application of estimation theory renders the processing of experimental results both rational and effective, and thus helps not only to make our knowledge more precise but to determine the measure of its reliability. As a consequence, estimation theory is indispensable in the analysis of the measuring processes and of experiments in general. The knowledge necessary for studying this book encompasses the disciplines of probability and mathematical statistics as studied in the third or fourth year at university. For readers interested in applications, comparatively detailed chapters on linear and quadratic estimations, and normality of observation vectors have been included. Chapter 2 includes selected items of information from algebra, functional analysis and the theory of probability, intended to facilitate the reading of the text proper and to save the reader looking up individual theorems in various textbooks and papers; it is mainly devoted to the reproducing kernel Hilbert spaces, helpful in solving many estimation problems. The text proper of the book begins with Chapter 3. This is divided into two parts: the first deals with sufficient statistics, complete sufficient statistics, minimal sufficient statistics and relations between them; the second contains the mostimportant inequalities of estimation theory for scalar and vector valued parameters and presents properties of the exponential family of distributions. The fourth chapter is an introduction to asymptotic methods of estimation. The method of statistical moments and the maximum-likelihood method are investigated. The sufficient conditions for asymptotical normality of the estimators are given for both methods. The linear and quadratic methods of estimation are dealt with in the fifth chapter. The method of least squares estimation is treated. Five basic regular versions of the regression model and the unified linear model of estimation are descri

Table of Contents

1. Introduction. 2. Preliminary Concepts from Algebra, Functional Analysis and Probability Theory. 3. Fundamental Notions from Estimation Theory. 4. Estimators in the Case of Large Samples. 5. Linear and Quadratic Estimators. 6. Normality of Observation Vectors. 7. Some Other Types of Estimators. 8. Conclusion. References. Subject Index.

Details

Language:
English
Copyright:
© 1988
Published:
Imprint:
North Holland
Print ISBN:
9780444989413
Electronic ISBN:
9780444598080