Fluorinated Materials for Energy Conversion

1st Edition

Editors: Tsuyoshi Nakajima Henri Groult
Print ISBN: 9780444560957
eBook ISBN: 9780080531786
Imprint: Elsevier Science
Published Date: 20th May 2005
Page Count: 592
335.00 + applicable tax
205.00 + applicable tax
255.00 + applicable tax
300.00 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Fluorinated materials for energy conversion offers advanced information on the application of fluorine chemistry to energy conversion materials for lithium batteries, fuel cells, solar cells and so on. Fluorine compounds and fluorination techniques have recently gained important roles in improving the electrochemical characteristics of such energy production devices. The book therefore focuses on new batteries with high performance, the improvements of cell performance and the improvement of electrode and cell characteristics. The authors present new information on the effect of fluorine and how to make use of fluorination techniques and fluorine compounds. With emphasis on recent developments, this book is suitable for students, researchers and engineers working in chemistry, materials science and electrical engineering.

Key Features

  • Contains practical information, supported by examples
  • Provides an update on recent developments in the field
  • Written by specialists working in fluorine chemistry, electrochemistry, polymer and solid state chemistry


Academic and industrial researchers, technicians and graduate students interested in fundamental and/or applied research in Chemistry, Materials science and Electrical engineering

Table of Contents

Chapter 1. Experimental and theoretical aspects of the fluorine evolution reaction on carbon anodes in molten KF-2HF (H. Groult et al.).
Chapter 2. Applications of fluorinated carbon materials to primary and secondary lithium batteries (Tsuyoshi Nakajima).
Chapter 3. Synthesis and electrochemical properties of new carbon anodes prepared by chemical vapor infiltration (Yoshimi Ohzawa).
Chapter 4. Electrochemical properties of fluorinated carbon nanotubes (Hidekazu Touhara).
Chapter 5. Fluorine-doped tin oxide electrodes for lithium batteries (Chai-Won Kwon et al.).
Chapter 6. Synthesis of fluorinated cathodes and fluoride electrolytes for lithium ion battery (Susumu Yonezawa, Masayuki Takashima).
Chapter 7. Physicochemical properties of fluorine-containing electrolytes for lithium batteries (D. Lemordant et al.).
Chapter 8. Fluorinated anions and electrode/electrolyte stability in lithium batteries (R. Yazami).
Chapter 9. Electrochemical properties of lithium electrolytes based on bis(polyfluorodiolato)borate and tetrakis(polyfluoroalkoxy)aluminate superweak anions (B.G. Nolan et al.).
Chapter 10. Fluorinated electrolytes based on lithium salts of strong Bronsted acids (O.E. Geiculescu et al.).
Chapter 11. Electrolytes for lithium batteries (Kiyoshi Kanamura). Chapter 12. Thermally stable fluoro-organic solvents for lithium ion battery (Jun-ichi Yamaki).
Chapter 13. Physical and electrochemical properties and application to lithium batteries of fluorinated organic solvents (Yukio Sasaki).
Chapter 14. PVdF based polymers for lithium batteries (J.-Y. Sanchez et al.).


No. of pages:
© Elsevier Science 2005
Elsevier Science
eBook ISBN:
Hardcover ISBN:
Paperback ISBN:

About the Editor

Tsuyoshi Nakajima

Tsuyoshi Nakajima is Professor in the Department of Applied Chemistry, Aichi Institute of Technology in Japan. He has worked on fluorine chemistry and electrochemistry (that is, fluorinated materials) for primary and rechargeable lithium batteries, and fluorine-, fluoride-, or oxyfluoride-graphite intercalation compounds. Li/(CF)n battery is the first primary lithium battery commercialized on the basis of the research on graphite fluoride which was performed in his laboratory at Kyoto University. His research was on the discharge mechanism of Li/(CF)n battery and synthesis of graphite fluoride, (CF)n with excellent discharge performance. The importance of carbon-fluorine compounds as battery materials was first recognized by graphite fluoride cathode of Li/(CF)n battery. Furthermore, new graphite anode for electrolytic production of fluorine gas was developed on the basis of his work on fluorine-graphite intercalation compound with high electrical conductivity. Recently. his research interest is on the application of fluorine chemistry to rechargeable lithium batteries. Fluorination techniques were applied to surface modification of graphite anode which increases the capacities of graphite anode and enables the low temperature operation of lithium ion battery. For the application of lithium ion battery using flammable organic solvents to electric sources of hybrid and electric vehicles, high safety is the most important issue. He has found that organo-fluorine compounds are excellent new solvents with high oxidation stability (that is, high safety for rechargeable lithium batteries). He published about 230 papers and 24 books. In academic societies, he served as chairman of JSPS 155th Committee on Fluorine Chemistry; The Society of Fluorine Chemistry, Japan; Executive Committee of Carbon Society of Japan; and Regional Editor and Editorial Board of J. Fluorine Chemistry.

Affiliations and Expertise

Aichi Institute of Technology, Toyota, Japan

Henri Groult

Henri Groult is Director of Research of CNRS-UPMC-ESPCI UMR 7612, University of Pierre and Marie Curie (Paris 6) in France. He has devoted his research life to fluorine chemistry, electrochemistry, and molten salt chemistry. His main research subjects are electrolytic production of fluorine gas, fluorine compounds for primary and secondary lithium batteries, and electrochemical properties of molten fluorides and chlorides. He has obtained interesting results on fluorine evolution reaction on carbon electrodes, discharge behavior of carbon-fluorine compounds, charge/discharge characteristics of metal fluorides, and electrochemical properties of molten salts. On these subjects, he published more than 100 papers and 7 books. His activity has played an important role in fluorine chemistry in France. He has served as Director of the French Network of Fluorine, Chairman of the 17th European Symposium on Fluorine Chemistry (Paris, July 2013), and Editorial board of J. Fluorine Chemistry.

Affiliations and Expertise

University of Pierre and Marie Curie, Paris, France


@qu: "The contributing authors to this monograph are drawn from the electrochemical, fluorine, polymer and solid state communities, in any cases combining more than one speciality within their expertise. Achieving a balance between describing research that is at the forefront of current knowledge and an adequate treatment of fundamental concepts so that the text can be understood readily by those from other disciplines, is a stringent test. This volume has made a very good attempt to meet the challenge. This book can be recommended for libraries where there are research groups active in energy research and also for libraries in general as an account of an important research area and one that is likely to be one of the drivers for fluorine chemistry for some time to come." @source: J.M. Winfield, Dpt. of Chemistry, University of Glasgow, UK, JOURNAL OF FLUORINE CHEMISTRY, 2005 @qu: This book is about fluorine containing materials for energy conversion and storage. The contents are subdivided into 24 chapters. The better part of the book deals with fluorinated materials for lithium batteries. Furthermore, materials for solar cells, fuel cells, and molten-salt reactors are reviewed also. The book by Nakajima and Groult is a good compilation about the recent advances and findings of these materials in the above mentioned areas of application. @source: Prof Sergio Trasatti - Department of Physical Chemistry and Electrochemistry, University of Milan, Italy, ELECTROCHIMICA ACTA, 2005 @qu: "This very interesting book provides a good general overview about (potential) use of fluorinated materials for energy conversion and storage. Everybody who is interested in this topic will find a nice collection of information on this. The book was carefully revised and has a consistent layout" @source: Jens Olschimke, ELECTROCHIMICA ACTA, 2005