Description

Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations—whether in the liquid or gaseous state or both—is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level.

Key Features

  • Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.
  • Changes made to the book's pedagogy in the first several chapters accommodate the needs of students who have completed minimal prior study of fluid mechanics.
  • More than 200 new or revised end-of-chapter problems illustrate fluid mechanical principles and draw on phenomena that can be observed in everyday life

Readership

Senior undergraduate/graduate students in mechanical, civil, aerospace, chemical and biomedical engineering; Senior undergraduate/graduate students in physics, chemistry, meteorology, geophysics, and applied mathematics

Table of Contents

Founders of Modern Fluid Dynamics

Dedication

In Memory of Pijush Kundu

In Memory of Ira Cohen

About the Third Author

About the DVD

Preface

Companion Website

Acknowledgments

Nomenclature

Notation

Symbols

Chapter 1. Introduction

Chapter Objectives

1.1 Fluid Mechanics

1.2 Units of Measurement

1.3 Solids, Liquids, and Gases

1.4 Continuum Hypothesis

1.5 Molecular Transport Phenomena

1.6 Surface Tension

1.7 Fluid Statics

1.8 Classical Thermodynamics

1.9 Perfect Gas

1.10 Stability of Stratified Fluid Media

1.11 Dimensional Analysis

Exercises

Literature Cited

Supplemental Reading

Chapter 2. Cartesian Tensors

Chapter Objectives

2.1 Scalars, Vectors, Tensors, Notation

2.2 Rotation of Axes: Formal Definition of a Vector

2.3 Multiplication of Matrices

2.4 Second-Order Tensors

2.5 Contraction and Multiplication

2.6 Force on a Surface

2.7 Kronecker Delta and Alternating Tensor

2.8 Vector, Dot, and Cross Products

2.9 Gradient, Divergence, and Curl

2.10 Symmetric and Antisymmetric Tensors

2.11 Eigenvalues and Eigenvectors of a Symmetric Tensor

2.12 Gauss’ Theorem

2.13 Stokes’ Theorem

2.14 Comma Notation

Exercises

Literature Cited

Supplemental Reading

Chapter 3. Kinematics

Chapter Objectives

3.1 Introduction and Coordinate Systems

3.2 Particle and Field Descriptions of Fluid Motion

3.3 Flow Lines, Fluid Acceleration, and Galilean Transformation

3.4 Strain and Rotation Rates

3.5 Kinematics of Simple Plane Flows

3.6 Reynolds Transport Theorem

Exercises

Literature Cited

Supplemental Reading

Chapter 4. Conservation

Details

No. of pages:
920
Language:
English
Copyright:
© 2012
Published:
Imprint:
Academic Press
eBook ISBN:
9780123821010
Print ISBN:
9780123821003

About the author

David Dowling

While in college, David R. Dowling held summer positions at Hughes Aircraft Co. and the Los Angeles Air Force Station. He completed his doctorate in 1988 at Graduate Aeronautical Laboratories of the California Institute of Technology and moved north to Seattle to accomodate his wife's career in medicine. While there, he worked for a year in the laser technology group at Boeing Aerospace, and then for almost three years as a post-doc at the Applied Physics Laboratory of the University of Washington. In 1992, he accepted a faculty position at the University of Michigan. Prof. Dowling is currently conducting research in acoustics and fluid mechanics. He is a fellow of the Acoustical Society of America, a member of the American Society of Mechanical Engineers, and a member of the American Physical Society. He is a US citizen. Positions at the University of Michigan : Professor, Sept 2005 to Present Associate Professor, Sept 1999 thru August 2005 Assistant Professor, Sept 1992 thru August 1999 Visiting Assistant Professor, July 1992 thru August 1992

Affiliations and Expertise

Professor, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI