Flight Dynamics and System Identification for Modern Feedback Control

1st Edition

Avian-Inspired Robots

Print ISBN: 9780857094667
eBook ISBN: 9780857094674
Imprint: Woodhead Publishing
Published Date: 31st August 2013
Page Count: 160
149.00 + applicable tax
120.00 + applicable tax
200.00 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. Among these vehicles are avian-inspired, flapping-wing designs, which are safe to operate near humans and are required to carry payloads while achieving manoeuverability and agility in low speed flight. Conventional methods and tools fall short of achieving the desired performance metrics and requirements of such craft. Flight dynamics and system identification for modern feedback control provides an in-depth study of the difficulties associated with achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived using analytical and experimental methods, with which a controls designer may then apply familiar tools. This title consists of eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization.

Key Features

  • Presents experimental flight data for validation and verification of modelled dynamics, thus illustrating the deficiencies and difficulties associated with modelling flapping-wing flight
  • Derives a new flight dynamics model needed to model avian-inspired vehicles, based on nonlinear multibody dynamics
  • Extracts aerodynamic models of flapping flight from experimental flight data and system identification techniques


Practicing engineers and researchers in aerospace and mechanical engineering interested in flapping-wing or new and exotic aircraft configurations

Table of Contents


List of figures

List of tables



About the authors

Chapter 1: Introduction


1.1 Background and motivation

1.2 Bio-inspired flapping wing aircraft

1.3 Flapping-wing literature review

1.4 Scope and contributions of current research

Chapter 2: Ornithopter test platform characterizations


2.1 Mathematical representation of an aircraft

2.2 Ornithopter aircraft description

2.3 Measurements from flight data

2.4 Configuration-dependent mass distribution

2.5 Quasi-hover aerodynamics

2.6 Implications for flight dynamics modeling

2.7 Chapter summary

Chapter 3: Rigid multibody vehicle dynamics


3.1 Model configuration

3.2 Kinematic equations of motion

3.3 Dynamic equations of motion

3.4 Chapter summary

Chapter 4: System identification of aerodynamic models


4.1 System identification method

4.2 Tail aerodynamics

4.3 Wing aerodynamics

4.4 Chapter summary

Chapter 5: Simulation results


5.1 Software simulation architecture

5.2 Determining trim solutions

5.3 Numerical linearization about straight and level mean flight

5.4 Modeling implications for control

5.5 Chapter summary

Chapter 6: Concluding remarks


6.1 Summary of work

6.2 Summary of modeling assumptions

6.3 Summary of original contributions

6.4 Recommendations for future research

Appendix A: Field calibration of inertial measurement units

Appendix B: Actuator dynamics system identification

Appendix C: Equations of motion for single-body flight vehicles

Appendix D: Linearization of a conventional aircraft model




No. of pages:
© Woodhead Publishing 2013
Woodhead Publishing
eBook ISBN:
Hardcover ISBN:


"...very clearly written and is quite readable. The authors are clearly leading experts in the field...strongly recommended to readers interested in the subject."--The Aeronautical Journal, February 2015

"Aerospace engineers Grauer…and Hubbard…describe an ornithopter they designed, built, and tested. An ornithopter flies by flapping wings like a bird. They cover ornithopter test platform characterizations, rigid multi-body vehicle dynamics, system identification of aerodynamic models, and simulation results."--ProtoView.com, February 2014