COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Fish Physiology: Organic Chemical Toxicology of Fishes - 1st Edition - ISBN: 9780123982544, 9780123982551

Fish Physiology: Organic Chemical Toxicology of Fishes, Volume 33

1st Edition

Editors: Keith Tierney Anthony P. Farrell Colin Brauner
Hardcover ISBN: 9780123982544
eBook ISBN: 9780123982551
Imprint: Academic Press
Published Date: 17th December 2013
Page Count: 574
Sales tax will be calculated at check-out Price includes VAT/GST
119.95
83.96
72.99
90.95
Unavailable
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Dedication

Contributors

Abbreviations and Acronyms

Preface

1. Organic Contaminants and Fish

1 Contaminants: A Short Historical Preamble

2 Contaminant Toxicokinetics in Fishes

3 Predicting Contaminant Movement in the Environment and Fish

4 Quantifying Contaminants and Exposures

5 Conclusion

Acknowledgment

References

2. Effects of Legacy Persistent Organic Pollutants (POPs) in Fish—Current and Future Challenges

1 Introduction

2 Transformations of POPs in the Aquatic Environment

3 Endocrine Disruption

4 Effects on Early Development

5 Transgenerational Effects

6 Effects on Growth, Condition, and Energy Reserves

7 Effects on Reproduction

8 Immunotoxicity

9 Neoplasia and Related Pathological Conditions

10 Effects on Behavior, Including Foraging, Aggression, and Predator Avoidance

11 Risk Assessment Challenges

Acknowledgments

References

3. Organometal(loid)s

1 Introduction

2 Organic Mercury

3 Organoselenium

4 Organoarsenicals

5 Organotin Compounds

6 Other Organometal(LOID)S

7 Conclusions

References

4. Effects on Fish of Polycyclic Aromatic HydrocarbonS (PAHS) and Naphthenic Acid Exposures

1 Introduction

2 Transformations of PAHs in the Aquatic Environment

3 Hepatic Neoplasia and Related Lesions in Wild Fish

4 Effects on Reproduction

5 Effects on Embryonic and Larval Development

6 Transgenerational Effects

7 Other Effects with Consequences for Survival of Postlarval Stages

8 Naphthenic Acids as a New Concern

9 Future Directions

Acknowledgment

References

5. Estrogenic Endocrine Disrupting Chemicals in Fish

1 Introduction

2 EDC

3 Toxicokinetics

4 Mechanisms of Toxicity

5 Xenoestrogen Effects

6 Interactions with Other Toxic Agents

7 Knowledge Gaps and Future Directions

References

6. Insecticide Toxicity in Fish

1 Abstract/Introduction

2 Background

3 Insecticide Classes

4 Organophosphates

5 Carbamates

6 Pyrethroids

7 Neonicotinoids

8 Phenylpyrazoles

9 Microbial-Based Insecticides

10 Insect Growth Regulators

11 Mixtures

12 Data Gaps

13 Summary

References

7. Effects of Herbicides on Fish

1 Introduction

2 Classification of Herbicides

3 Acute Lethality of Herbicides to Fish

4 Sublethal Effects of Herbicides in Fish

5 Indirect Effects of Herbicides on Fish

6 Conclusions

Acknowledgments

References

8. Personal Care Products in the Aquatic Environment: A Case Study on the Effects of Triclosan in Fish

1 Introduction

2 Physical and Chemical Properties of Triclosan, and Its Use as a Personal Care Product

3 Exposure in the Aquatic Environment

4 Kinetics and Metabolism of Triclosan

5 Toxicity of Triclosan

6 Reproductive and Developmental Effects

7 Effects of Triclosan on the Thyroid Axis

8 Interactions of Triclosan with Aryl Hydrocarbon and Ryanodine Receptors

9 Future Use of Triclosan and Related Environmental Issues

10 Conclusions and Knowledge Gaps

11 General Lessons Learned from the Case Study of Triclosan

Acknowledgment

References

9. Emerging Threats to Fishes: Engineered Organic Nanomaterials

1 Introduction

2 The Environmental Chemistry of Engineered Nanomaterials and Bioavailabily to Fishes

3 Acute Toxicity of Organic ENMs

4 Uptake Routes and Target Organs for Organic ENMs

5 Effects of Organic ENMs on the Physiological Systems of Fishes

6 Studies on Organic ENMs and Capping Agents

7 Nanocrystalline and Nanofibrillar Cellulosic Materials

8 Polymer-Coated ENMs in the Agricultural Sector

9 Key Needs in Environmental Risk Assessment of Organic ENMs

10 Conclusions and Perspectives

Acknowledgments

References

10. Handling Fish Mixture Exposures in Risk Assessment

1 Introduction

2 Fish and Mixtures

3 Principles of Risk and Impact Assessment of Chemicals and Mixtures

4 Cumulative Risk Assessment for Mixtures of Toxicants

5 Evidence for Mixture Impacts in the Field

6 Conclusions, Overview, and Summary

References

Index

Other volumes in the Fish Physiology Series


Description

Fish Physiology: Organic Chemical Toxicology of Fishes discusses the different types of organic chemical contaminants and their respective toxic effects in fish. The book also covers the detection of dissolved organic compounds and methods to assess organic toxicity. Substances addressed in this book include organometallics, hydrocarbons, endocrine disrupting compounds (EDCs), insecticides, herbicides, and pharmaceuticals.

Fish are exposed to an ever-increasing array of organic chemicals that find their way into rivers and oceans. Some of these compounds are no longer being produced but nonetheless persist within the environment (persistent organic pollutants, or POPs). The exposure of fish to toxic organic compounds has potential impact on human, fish, and ecosystem health. Yet the regulations that govern environmental water quality vary worldwide, and compliance is never complete. This book provides a crucial resource on these issues for researchers in zoology, fish physiology, and related fields; applied researchers in environmental monitoring, conservation biology, and toxicology; and university-level students and instructors in these areas.

Key Features

  • Organized by type of toxic organic chemicals
  • Includes metals, POPs, EDCs, herbicides, insecticides, and pharmaceuticals
  • Measures toxicity in a variety of ways aside from lethality
  • Probes the toxic effects of compound mixtures as well as single pollutants

Readership

Researchers in zoology, fish physiology, fisheries biology, comparative physiology, and ecology; applied researchers in environmental monitoring, conservation biology and toxicology; university-level students and instructors in these areas.


Details

No. of pages:
574
Language:
English
Copyright:
© Academic Press 2014
Published:
17th December 2013
Imprint:
Academic Press
Hardcover ISBN:
9780123982544
eBook ISBN:
9780123982551

Reviews

"...a well-written synthesis of the literature created by an impressive panel of experts. It will have longevity on the ecotoxicologist’s bookshelf…" --The Quarterly Review of Biology

Ratings and Reviews


About the Editors

Keith Tierney

Professor Keith B. Tierney is Assistant Professor in Biological Sciences at the Environmental Toxicology Department of the University of Alberta, Edmonton, Canada. His current research interests are in environmental toxicology and physiology of fishes.

Affiliations and Expertise

Department of Biological Sciences, University of Alberta, Edmonton, AB

Anthony P. Farrell

Anthony P. Farrell

Dr. Tony Farrell is a professor in the Department of Zoology & Faculty of Land and Food Systems at the University of British Columbia and a Fellow of the Royal Society of Canada. Tony’s research had provided an understanding of fish cardiorespiratory systems and has applied this knowledge to salmon migratory passage, fish stress handling and their recovery, sustainable aquaculture and aquatic toxicology. He has over 470 research publications in peer-reviewed scientific journals and an h-factor of 92. He has co-edited of 30 volumes of the Fish Physiology series, as well as an award-winning Encyclopedia of Fish Physiology. As part of his application of physiology to aquaculture, he has studied the sub-lethal impacts of sea lice and piscine orthoreovirus on the physiology of juvenile salmon. He has received multiple awards, including the Fry Medal, which is the highest honour to a scientist from the Canadian Society of Zoologists, the Beverton Medal, which is the highest honour to a scientist from the Fisheries Society of the British Isles, the Medal of Excellence, which is the highest honour of the American Fisheries Society and the Murray A. Newman Awards both for Research and for Conservation from the Vancouver Marine Sciences Centre. He is a former President of the Society of Experimental Biologists and a former Editor-in-Chief for the Journal of Fish Biology. He served as a member of the Minister’s Aquaculture Advisory Committee on Finfish Aquaculture for British Columbia and was a member of the Federal Independent Expert Panel on Aquaculture Science.

Affiliations and Expertise

Professor, Department of Zoology and Faculty of Land and Food Systems, University of British Columbia and Fellow, Royal Society of Canada

Colin Brauner

Colin Brauner

Colin Brauner was educated in Canada at the University of British Columbia (Ph D), followed by a Post-doctoral fellowship at Aarhus University and the University of Southern Denmark, and was a Research Associate at McMaster University. He is a Professor of Zoology, UBC and Director of the UBC Aquatics Facility. He has been a Co-Editor of the Fish Physiology series since 2006. His research investigates environmental adaptations (both mechanistic and evolutionary) in relation to gas-exchange, acid-base balance and ion regulation in fish, integrating responses from the molecular, cellular and organismal level. The ultimate goal is to understand how evolutionary pressures have shaped physiological systems among vertebrates and to determine the degree to which physiological systems can adapt/acclimate to natural and anthropogenic environmental changes. This information is crucial for basic biology and understanding the diversity of biological systems, but much of his research conducted to date can also be applied to issues of aquaculture, toxicology and water quality criteria development, as well as fisheries management. His achievements have been recognized by the Society for Experimental Biology, UK (President’s medal) and the Canadian Conference for Fisheries Research (J.C. Stevenson Memorial Lecturer) and the Vancouver Marine Sciences Centre (Murray A. Newman Award for Aquatic Research). He is a former President of the Canadian Society of Zoologists.

Affiliations and Expertise

Professor of Zoology, UBC and Director of the UBC Aquatics Facility