COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Fibre Reinforced Composites - 1st Edition - ISBN: 9780128210901

Fibre Reinforced Composites

1st Edition

Constituents, Compatibility, Perspectives and Applications

0.0 star rating Write a review
Editors: Joseph Kuruvilla Kristiina Oksman George Gejo Wilson Runcy Saritha Appukuttan
Paperback ISBN: 9780128210901
Imprint: Woodhead Publishing
Published Date: 1st March 2021
Page Count: 690
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. An Introduction to fibre reinforced composites
2. Various fabrication methods employed in fiber reinforced composites
3. Surface treatments in fibre reinforced composites
4. Machining of Composite Materials
5. Thermoplastic natural fibre based Composites
6. Biobased polyamide reinforced with natural fibre composites
7. Elastomer matrix based natural fibre composites
8. Thermosetting natural fibre based composites
9. Polymer Blend Natural Fibre based Composites
10. Biodegradability studies of lignocellulosic fiber reinforced composites
11. Carbon and Glass Fiber Reinforced Thermoplastic Matrix Composites
12. Carbon fiber and Glass fiber reinforced elastomeric composites
13. Thermosetting matrix based glass and carbon fibre composites
14. Recent toughening strategies in carbon fibre reinforced composites
15. Commingled composites
16. Hollow fibre reinforced polymer composites
17. Metal fibre reinforced composites
18. Aramid fibre reinforced composites
19. Reclaimed fibre reinforced composites
20. Fibre reinforced cement based composites
21. Fibre reinforced metal matrix composites
22. Continuous Fibre reinforced SiC based Ceramic Matrix Composites
23. Industrial and biomedical applications of fibre reinforced composites
24. Automotive and construction applications of fibre reinforced composites
25. Aerospace and sports applications of fibre reinforced composites


Description

Polymer-based fibre-reinforced composites FRC’s have now come out as a major class of structural materials being used or regarded as substituent’s for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC’s have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC’s clearly reveal that FRC’s have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D’s to fabricate FRC’s with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites.

Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products.

Key Features

  • Focuses on the different types of FRC’s that are currently available (eg. from polymeric matrices to metallic and ceramic matrices, from carbon fibre to different types of natural fibres and from short to long fibre reinforced), their processing techniques, characterization of different properties, and how to improve the interfacial adhesion between an incompatible fibre and matrix and their applications
  • Looks at crisis areas such as how to incorporate incompatible fibres and matrices together (eg. Non-polar polypropylene matrix is not compatible with that of polar natural fibres and hence suitable surface modifications are required to make them compatible with each other) along with low cost processing methods, low density and high strength
  • Uncovers clarifications to both elementary and practical problems related to the fabrication of FRCs
  • Schematic representations depicting the interaction between different fibre types and matrices will be provided in some chapters

Readership

Scientists/Researchers working in the field of fibre reinforced composites; Research laboratories, Polymer Scientists, Polymer Chemists, Polymer Engineers, Composite Panel manufacturing companies and R&D’s, Automobile, aerospace companies and their R&D’s dedicated to the use of fibre reinforced panels in different applications


Details

No. of pages:
690
Language:
English
Copyright:
© Woodhead Publishing 2021
Published:
1st March 2021
Imprint:
Woodhead Publishing
Paperback ISBN:
9780128210901

Ratings and Reviews


About the Editors

Joseph Kuruvilla

Prof. Joseph Kuruvilla is a senior professor in chemistry and the Dean of Student Activities, Student Welfare & Outreach at the Indian Institute of Space Science & Technology, Trivandrum, Kerala, India. He obtained his PhD at CSIR-NIIST (Formerly RRL), Trivandrum in 1993 and did post-doctoral work in Brazil and Sweden. He is the editor of the 3-volume book titled “Advances in Polymer Composites.” Prof. Kuruvilla has authored over 180 international publications in international scientific journals, as well as several book chapters. He has an h-index of 47, and his work has been cited more than 10,000 times. His research interests include natural fiber-based composites, polymer blends and composites, green materials, polymers from renewable resources, and development of biosensors.

Affiliations and Expertise

Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Valiamala, Trivandrum, Kerala, India

Kristiina Oksman

Prof. Kristiina Oksman has been chair professor and director of Composite Centre at Luleå University of Technology, Division of Materials Science, since 2006 and Adjunct Professor at the University of Toronto, Faculty of Forestry, Canada since 2006. She is editor on Biocomposites for Elsevier’s Composites Part A. Prof. Oksman has been working with natural fiber composites for more than 25 years and the last 12 years focusing on biobased nanocomposites and their property characterization and processing. Other research activities have also included biocarbon and electrospinning of biopolymers. She has more than 300 scientific publications and conference proceedings in the field of nanostructured biomaterials and biocomposites and is highly cited. Her main expertise is the fundamental understanding of nanomaterials and composites, their processing development and the relationship between the manufacturing process, the structure and properties.

Affiliations and Expertise

University of Toronto, Faculty of Forestry, Canada

George Gejo

Dr. George Gejo obtained his PhD in chemistry from Kalasalingam University, Tamil Nadu, India in 2014, specializing in the area of commingled natural fiber composites. He published several articles in high-impact journals and wrote chapters for several books. He has two and a half years of experience as a junior scientist at the Corporate R&D Centre, HLL Lifecare Limited, a Government of India Enterprise, in the area of graphene/natural rubber latex nanocomposites for contraceptive applications. Dr. Gejo also completed two years of post-doctoral research in the area of EMI shielding materials during his tenure as UGC-DSKPDF at School of Pure and Applied Physics, Mahatma Gandhi University, Kerala, India. He is a post-doctoral researcher at Division of Materials Science, Luleå University of Technology, Luleå, Sweden. His present research interests include natural fiber-based composites, carbon nanocomposites for EMI shielding applications, graphene-based composites, and biomass/biochar to advanced carbon nanomaterials.

Affiliations and Expertise

Division of Materials Science, Luleå University of Technology, Luleå, Sweden and School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, India

Wilson Runcy

Dr. Wilson Runcy is an assistant professor in the Department of Chemistry, St. Cyril’s College, Kerala, India. He obtained his PhD in chemistry from Mahatma Gandhi University, Kottayam, India. He has written several publications in international journals and conference proceedings. He has also co-edited a book titled “Transport Properties of Polymeric Membranes.” He has also conducted research work at Katholieke Universiteit Leuven, Belgium. Dr. Runcy has also almost two years of industrial experience as a junior scientist at the Corporate R&D Centre, HLL Lifecare Limited, a Government of India Enterprise, in the area of synthesis of green polymers. His current research interests include polymer nanocomposites for membrane applications, synthesis of biodegradable polymers for medical applications, and development of high quality EMI shielding material.

Affiliations and Expertise

Department of Chemistry, St. Cyrils College, Adoor, Kerala, India

Saritha Appukuttan

Dr. Saritha Appukuttan received her PhD in Chemistry from MG University, Kottayam under the guidance of Dr. Kuruvilla Joseph (IIST, TVM) on chlorobutyl rubber nanocomposites. Dr. Saritha has published more than 20 articles in reputed international journals including Composites Part A, Polymer Composites, Journal of Applied Polymer Science etc. Dr. Saritha also has 5 book chapters from reputed publishers (Elsevier, Wiley, Springer etc.). At present she is Assistant Professor at Department of Chemistry of Amrita School of Arts and Sciences, Amritapuri, Kollam, Kerala, India. She has 12 years of research experience on micro and nanofiller based composites.

Affiliations and Expertise

MG University, Kottayam