This is a well-rounded handbook of fermentation and biochemical engineering presenting techniques for the commercial production of chemicals and pharmaceuticals via fermentation. Emphasis is given to unit operations fermentation, separation, purification, and recovery. Principles, process design, and equipment are detailed. Environment aspects are covered.

The practical aspects of development, design, and operation are stressed. Theory is included to provide the necessary insight for a particular operation. Problems addressed are the collection of pilot data, choice of scale-up parameters, selection of the right piece of equipment, pinpointing of likely trouble spots, and methods of troubleshooting.

The text, written from a practical and operating viewpoint, will assist development, design, engineering and production personnel in the fermentation industry. Contributors were selected based on their industrial background and orientation. The book is illustrated with numerous figures, photographs and schematic diagrams.


Engineers and scientists in the chemical and pharmaceutical industries who use fermentation techniques in production. Development, design, engineering and production personnel in the fermentation industry

Table of Contents

1. Fermentation Pilot Plant 1.1 Microbial Fermentation 1.2 Mammalian Cell Culture System 1.3 Bioreactors for Plant Cell Tissue and Organ Cultures 2. Fermentation Design 2.1 Introduction 2.2 Fermentation Department, Equipment and Space Requirements 2.3 General Design Data 2.4 Continuous Sterilizers 2.5 Fermenter Cooling 2.6 The Design of Large Fermenters (Based on Aeration) 2.7 Trouble Shooting in a Fermentation Plant 3. Nutritional Requirements in Fermentation Processes 3.1 Introduction 3.2 Nutritional Requirements of the Cell 3.3 The Carbon Source 3.4 The Nitrogen and Sulfur Source 3.5 The Source of Trace and Essential Elements 3.6 The Vitamin Source and Other Growth Factors 3.7 Physical and Ionic Requirements 3.8 Media Development 3.9 Effect of Nutrient Concentration on Growth Rate 4. Statistical Methods for Fermentation Optimization 4.1 Introduction 4.2 Traditional One-Variable-at-a-Time Method 4.3 Evolutionary Optimization 4.4 Response Surface Methodology 4.5 Advantages of RSM 4.6 Disadvantages of RSM 4.7 Potential Difficulties with RSM 4.8 Methods to Improve the RSM Model 4.9 Summary 5. Agitation 5.1 Theory and Concepts 5.2 Pumping Capacity and Fluid Shear Rates 5.3 Mixers and Impellers 5.4 Baffles 5.5 Fluid Shear Rates 5.6 Full-Scale Plant Design 5.7 Full-Scale Process Example 5.8 The Role of Cell Concentration Mass Transfer Rate 5.9 Some Other Mass Transfer Con


No. of pages:
© 1996
William Andrew
eBook ISBN:
Print ISBN:

About the authors