Environmentally Oriented Modernization of Power Boilers

Environmentally Oriented Modernization of Power Boilers

1st Edition - May 15, 2020
This is the Latest Edition
  • Author: Marek Pronobis
  • Paperback ISBN: 9780128199213
  • eBook ISBN: 9780128199220

Purchase options

Purchase options
Available
DRM-free (PDF, Mobi, EPub)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Environmentally oriented modernization of power boilers explains how to retrofit and upgrade power boilers in aging thermal and CHP plants, with emphasis on pulverized fuel boilers (PF). The work provides direct avenues to higher boiler efficiency, harmful emissions reduction, fuel grinding system modernization, fuel flexibility, boiler operation flexibilization, reduced corrosion, erosion, and fouling. It also explores how to integrate emission reduction systems into boiler operations. The work is planned for engineers and graduate students as well as for power plant management. For the latter, it helps find the best solution for the necessary modernization and functions as an aid in organizing tenders as well as in evaluating projects offered. Errata to published editions can be found here https://modernpowerboilers.org/errata.html

Key Features

  • Presents, in a clear and accessible way, the most important solutions related to boiler emissions reduction, including CO2 emissions
  • Helps increase boiler efficiency through technical and operational upgrades
  • Helps increase the usefulness of boilers by increasing fuel and operational flexibility
  • Supports reduction of harmful phenomena, such as corrosion, erosion, and fouling
  • Accompanied with a careful selection of realized modernizations, including pitfalls and best practice discussion
  • Chapters are presented alongside hundreds of literature references for further study

Readership

Power and mechanical engineers in power plants, power boiler designers and manufacturers, and environmental compliance practitioners. Graduate and early career researchers in energy and power engineering

Table of Contents

  • 1. INTRODUCTION

    2. BOILER EFFICIENCY AND THERMAL LOSSES

    3. MODERNISATION TO REDUCE THE FLUE GAS LOSS
    3.1. Lowering of flue gas temperature
    3.2. Selection of the minimum flue gas temperature at the boiler outlet
    3.3. Optimisation of flue gas outlet temperature
    3.4. Lowering the air excess number in the boiler

    4. REDUCTION OF NITROGEN OXIDE EMISSIONS
    4.1. Formation of nitrogen oxides
    4.2. Impact of operating conditions of the furnace on emissions of nitrogen oxides
    4.3. Methods of reduction of nitrogen oxide emissions in PF boilers
    4.4. Secondary methods of NOx reduction
    4.5. NOx reduction methods without the use of ammonia or urea
    4.6. Combined methods of NOx control
    4.7. The future of NOx emission reduction methods

    5. MODERNISATION OF FUEL GRINDING SYSTEMS
    5.1 Quality of pulverised coal
    5.2 Coal mills
    5.3 Modernisations of coal mills arising from low-NOx combustion
    5.4 Modernisation to improve the operating conditions of pulverisers in dynamic states
    5.5 Modernisation of pulverisers to reduce harmful emissions

    6. REPLACING COAL WITH OTHER FUELS
    6.1. Introduction
    6.2. Replacement of coal with natural gas
    6.3. Replacement of coal with blast furnace gas and low quality syngas
    6.4. Replacement of coal with fuel oil
    6.5. Replacement of hard coal with lignite
    6.6. Modernisation for the combustion of various fuels in the same boiler

    7. ADAPTATION OF BOILERS FOR BIOMASS BURNING
    7.1. Types of biomass used in the power industry
    7.2. Adaptation of PF boilers for biomass burning
    7.3. Complete replacement of coal with biomass

    8. HARMFUL PHENOMENA IN MODERNISED BOILERS
    8.1. HT corrosion on the flue gas side
    8.2. LT corrosion on the flue gas side
    8.3. Fly-ash erosion
    8.4. Fouling
    8.5. Slagging
    8.6. Condensation of sulphates

    9. CONVERSION OF AN EXISTING BOILER TO A CONDENSING BOILER
    2.1. Condensing technology
    2.2. Industrial applications

    10. INCREASING FLEXIBILITY OF BOILER OPERATION
    10.1. Adaptation of the boiler to work with a load higher than nominal
    10.2. Lowering the minimum boiler load
    10.3. Frequent start-ups and large and rapid load changes
    10.4. Increasing flexibility of boiler pressure parts

    11. INTERACTIONS BETWEEN EMISSION REDUCTION SYSTEMS
    11.1. Introduction
    11.2. Interactions between NOx reduction systems and dust removal systems
    11.3. Interactions between SOx reduction systems and dust removal systems
    11.4. Influence of flue gas dedusting and NOx reduction systems on wet FGD

Product details

  • No. of pages: 344
  • Language: English
  • Copyright: © Elsevier 2020
  • Published: May 15, 2020
  • Imprint: Elsevier
  • Paperback ISBN: 9780128199213
  • eBook ISBN: 9780128199220
  • About the Author

    Marek Pronobis

    Marek Pronobis is an expert in boilers and auxiliary equipment, novel heating surfaces, boiler modernisation, fuel flexibility, and low-NOx combustion in fossil and renewable fuels. He has conducted research on fouling and formation of ash deposits in boilers, erosion and corrosion processes in boilers, grinding and drying processes in solid fuel preparation installations, aluminosilicate additives improving boiler operation, and SCR and SNCR technology. He has published over 230 publications in scientific journals and conference proceedings.

    Affiliations and Expertise

    Head of Boiler and Steam Generator division of Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Gliwice, Poland