Engineering Materials 2

4th Edition

An Introduction to Microstructures and Processing

Authors: D R H Jones Michael Ashby
Paperback ISBN: 9780080966687
eBook ISBN: 9780080966694
Imprint: Butterworth-Heinemann
Published Date: 5th December 2012
Page Count: 576
43.95 + applicable tax
36.99 + applicable tax
69.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access

Table of Contents

Preface to the Fourth Edition


General Introduction

To the Reader

To the Lecturer

Accompanying Resources

About the Authors of the Tutorials

Part A: Metals

Chapter 1. Metals

1.1 Introduction

1.2 Metals for a Model Steam Engine

1.3 Metals for Drinks Cans

1.4 Metals for Hip Joints

1.5 Data for Metals

Chapter 2. Metal Structures

2.1 Introduction

2.2 Crystal and Glass Structures

2.3 Structures of Solutions and Compounds

2.4 Phases

2.5 Grain and Phase Boundaries

2.6 Shapes of Grains and Phases

2.7 Summary—Constitution and Structure

Worked Example

Chapter 3. Phase Diagrams 1

3.1 Introduction

3.2 Source Books

3.3 Components, Phases, and Structures

Worked Example

Worked Example

3.4 One- and Two-Component Systems

Worked Example

3.5 Solutions to Examples

Chapter 4. Phase Diagrams 2

4.1 Eutectics, Eutectoids, and Peritectics

4.2 Test Examples

4.3 Solutions to Examples

Chapter 5. Case Studies in Phase Diagrams

5.1 Introduction

5.2 Choosing Soft Solders

5.3 Pure Silicon for Microchips

5.4 Making Bubble-Free Ice

Worked Example

Chapter 6. Driving Force for Structural Change

6.1 Introduction

6.2 Driving Forces

6.3 Reversibility

6.4 Stability, Instability, and Metastability

6.5 Driving Force for Solidification

6.6 Solid-State Phase Changes

6.7 Precipitate Coarsening

6.8 Grain Growth

6.9 Recrystallization

6.10 Sizes of Driving Forces

Worked Example

Chapter 7. Kinetics 1—Diffusive Transformations

7.1 Introduction

7.2 Solidification

7.3 Heat-Flow Effects

7.4 Solid-State Phase Changes

7.5 Diffu


Engineering Materials: An Introduction to Microstructures and Processing is a comprehensive introduction to microstructures and processing of materials for engineering students and other related courses. It is composed of chapters that are arranged into four sections: metals, ceramics, polymers, and composites, which are the distinct generic classes of materials. The materials are presented in an easy-to-read style, while establishing the main concepts and providing details on how processing, microstructures, and physicochemical characters are interrelated.

The book emphasizes the relationship between structure, processing and properties, of both conventional and innovative materials. It provides detailed discussions of the different aspects of transformations, including interface kinetics, nucleation and growth, and constitutional undercooling. The book also presents new case studies and examples to illustrate, develop and consolidate the different topics. The text features new photographs and links to Google Earth, websites and video clips, and a companion site with access to instructors' resources: solution manual, image bank of figures from the book and a section of interactive materials science tutorials.

The text aims to provide detailed discussions about engineering materials to senior-level and postgraduate students of mechanical engineering, manufacturing, materials science, engineering design, products design, aeronautical engineering, and other engineering sciences.

Key Features

  • Many new or revised applications-based case studies and examples
  • Treatment of phase diagrams integrated within the main text
  • Increased emphasis on the relationship between structure, processing and properties, in both conventional and innovative materials
  • Frequent worked examples – to consolidate, develop, and challenge
  • Many new photographs and links to Google Earth, websites, and video clips
  • Accompanying companion site with access to instructors’ resources, including a suite of interactive materials science tutorials, a solutions manual, and an image bank of figures from the book


Senior level and postgraduate study in departments of mechanical engineering; materials sciences; manufacturing; engineering design; materials design; product design; aeronautical engineering; engineering sciences.


No. of pages:
© Butterworth-Heinemann 2013
Paperback ISBN:
eBook ISBN:

About the Authors

D R H Jones Author

Dr. Jones is co-author of Engineering Materials 1 and 2 and lead author for the 3rd and 4th editions. He was the founder editor of Elsevier's journal Engineering Failure Analysis, and founder chair of Elsevier's International Conference on Engineering Failure Analysis series. His research interests are in materials engineering, and along with serving as President of Christ's College at the University of Cambridge he now works internationally advising major companies and legal firms on failures of large steel structures.

Affiliations and Expertise

President, Christ's College, Cambridge, UK

Michael Ashby Author

Royal Society Research Professor Emeritus at Cambridge University and Former Visiting Professor of Design at the Royal College of Art, London, UK Mike Ashby is sole or lead author of several of Elsevier’s top selling engineering textbooks, including Materials and Design: The Art and Science of Material Selection in Product Design, Materials Selection in Mechanical Design, Materials and the Environment, and Materials: Engineering, Science, Processing and Design. He is also coauthor of the books Engineering Materials 1&2, and Nanomaterials, Nanotechnologies and Design.

Affiliations and Expertise

Professor Emeritus, Cambridge University, Cambridge, UK