Engineering for Storage of Fruits and Vegetables - 1st Edition - ISBN: 9780128033654

Engineering for Storage of Fruits and Vegetables

1st Edition

Cold Storage, Controlled Atmosphere Storage, Modified Atmosphere Storage

Authors: Chandra Gopala Rao
Paperback ISBN: 9780128033654
Imprint: Academic Press
Published Date: 10th August 2015
Page Count: 894

Unavailable

This product is currently not available for sale.

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Engineering for Storage of Fruits and Vegetables is a comprehensive reference that provides an understanding of the basic principles of cold storage load estimation, refrigeration capacity calculations for various types of cold storages, and other topics of evaporative cooling, thus demonstrating the important principles for designing low cost precooling chambers.

The book is written in an accessible manner to provide a solid understanding of different environments and their considerations to give readers the confidence they need to design suitable packaging materials by understanding parameters, including reaction rates, deteriorative reactions, Arrhenius equations, Q10, K, D, Z parameters, and their influence on reaction rates.

Key Features

  • Covers a wide variety of related topics, from post-harvest physiology of fruits and vegetables, to the various aspects of controlled atmosphere storages
  • Explains the application of water activities and enzyme kinetics for predicting shelf life of foods and design of packaging materials
  • Includes solved problems and exercises which guide students and assist with comprehension

Readership

Post graduate and Doctoral level students, R&D personnel in the field of food technology and Food Engineering.

Table of Contents

  • Preface
  • Part I: Pre Cooling of Fruits and Vegetables and their Storage Requirement
    • Chapter 1: Introduction
      • Abstract
      • 1.1. Storage Operations
      • 1.2. Modern Storage Methods
      • 1.3. Controlled Atmosphere Storage
      • 1.4. Modified Atmosphere Packaging
    • Chapter 2: Postharvest Physiology of Fruits and Vegetables
      • Abstract
      • 2.1. Postharvest Physiology
      • 2.2. Respiration
      • 2.3. Internal Factors Affecting Respiration
      • 2.4. External Factors Affecting Respiration
      • 2.5. Oxygen and Carbon Dioxide Concentration
      • 2.6. Mechanical Stresses
      • 2.7. Respiration Rate
      • 2.8. Van’t Hoff Rule
      • 2.9. Calculation of Q10 Values
      • 2.10. Heat of Respiration
      • 2.11. Transpiration
      • 2.12. Factors Influencing Transpiration
      • 2.13. Surface Heat Transfer Coefficient
      • 2.14. Desiccation
      • 2.15. Determination of Water Vapor Pressure Deficit (VPD)
      • 2.16. Postharvest Decay
      • 2.17. Conclusions
      • 2.18. Questions
    • Chapter 3: Estimation of Cooling Times of Foods
      • Abstract
      • 3.1. Introduction
      • 3.2. Fourier Heat Conduction Equation
      • 3.3. Estimation of Cooling Time Based on f and j Factors
      • 3.4. Problems
      • 3.5. Questions
    • Chapter 4: Precooling of Fruits and Vegetables by Ventilation Method
      • Abstract
      • 4.1. Introduction
      • 4.2. Factors Contributing to Spoilage
      • 4.3. Selection of a Cooling Method
      • 4.4. Ventilation
      • 4.5. Estimation of Airflow for Moisture Removal
      • 4.6. Airflow Required in Heat Removal
      • 4.7. Ventilation Systems
      • 4.8. Forced System
      • 4.9. Combined Forced and Extraction System
      • 4.10. Natural Ventilation
      • 4.11. Effectiveness of Ventilator Openings
      • 4.12. Low-Cost Cold Room
      • 4.13. Storehouse
      • 4.14. Layout of Floor Ducts for Storehouse
      • 4.15. Overhead Ventilation Air Distribution System
      • 4.16. Package Icing
      • 4.17. Ice Bunker
      • 4.18. Windrowed Top-Icing
      • 4.19. Problems on Cooling Load Calculations
      • 4.20. Questions
    • Chapter 5: Forced-Air Cooling of Fruits and Vegetables
      • Abstract
      • 5.1. Introduction
      • 5.2. Effects of Containers and Stacking Patterns
      • 5.3. Commercial Methods of Forced-Air Cooling
      • 5.4. Product Moisture Loss in Forced-Air Cooling
      • 5.5. Produce Cooling Pattern with Forced-Air Cooling
      • 5.6. Wet Cooling System and Flow-Through Cooling
      • 5.7. Questions
    • Chapter 6: Hydrocooling of Fruits, Vegetables, and Cut Flowers
      • Abstract
      • 6.1. Introduction
      • 6.2. Heat Load
      • 6.3. Hydrocooling Rates
      • 6.4. Empirical Methods for Calculating Hydrocooling Rates
      • 6.5. Hydrocooling Methods
      • 6.6. Types of Hydrocoolers
      • 6.7. Hydrocooler Design Considerations
      • 6.8. Hydrocooler Operation and Maintenance
      • 6.9. Warm–Up after Hydrocooling
      • 6.10. Refrigerated Storage of Flowers
      • 6.11. Dry Storage of Flowers
      • 6.12. Bud Harvesting
      • 6.13. Other Approaches
      • 6.14. Nursery Stock and Cut Flowers
      • 6.15. Storage Aspects of Few More Horticultural Products
      • 6.16. Questions
    • Chapter 7: Evaporative Cooling Systems for Fruits and Vegetables
      • Abstract
      • 7.1. Introduction
      • 7.2. Thermodynamics of EC
      • 7.3. Psychrometry of EC Process
      • 7.4. Types of EC Systems
      • 7.5. Indirect or Modified EC Systems
      • 7.6. Energy Cube System
      • 7.7. Design of WBT and Airflow for EC Systems
      • 7.8. Ductwork
      • 7.9. Example Problems on EC
      • 7.10. Points to Be Noted in EC
      • 7.11. Cost of EC Systems
      • 7.12. Maintenance of EC Systems
      • 7.13. Design of Cascade EC Systems
      • 7.14. Questions
    • Chapter 8: Vacuum Cooling of Fruits and Vegetables
      • Abstract
      • 8.1. Introduction
      • 8.2. Vacuum Cooling Principle
      • 8.3. Vacuum Cooling Process
      • 8.4. Vacuum-Producing Mechanisms
      • 8.5. Modeling of Vacuum Cooling Process
      • 8.6. Vacuum Cooling Equipment
      • 8.7. Design of Vacuum Cooling System
      • 8.8. Applications of Vacuum Cooling for Fruit and Vegetables
      • 8.9. Hydrovac Cooler
      • 8.10. Advantages of Vacuum Cooling
      • 8.11. Disadvantages of Vacuum Cooling
      • 8.12. Factors Affecting Vacuum Cooling Rate
      • 8.13. Factors Affecting Product/Produce Temperature Distribution
      • 8.14. Factors Affecting Vacuum Cooling Loss
      • 8.15. Questions
    • Chapter 9: Handling and Storage of Common Fruits
      • Abstract
      • 9.1. Introduction
      • 9.2. Handling and Harvesting
      • 9.3. Storage and Transportation
      • 9.4. Citrus Fruit
      • 9.5. Subtropical Fruits
    • Chapter 10: Handling and Cold Storage of Vegetables
      • Abstract
      • 10.1. Introduction
      • 10.2. Artichokes, Globe (0°C and 95–100% RH)
      • 10.3. Asparagus (0–2°C and 95–100% RH)
  • Part II: Cold Storage
    • Chapter 11: Moist Air and Applied Psychrometry
      • Abstract
      • 11.1. Introduction
      • 11.2. Dalton’s Law of Partial Pressures
      • 11.3. Gibb’s Theorem
      • 11.4. Psychrometric Properties of Moist Air
      • 11.5. Numerical Examples
      • 11.6. Psychrometric Chart
    • Chapter 12: Preliminaries for the Estimation of Cooling Loads
      • Abstract
      • 12.1. Introduction
      • 12.2. Different Heat Sources
      • 12.3. Heat Flow Due to Conduction
      • 12.4. Sun Load
      • 12.5. Heat Load from Produce
      • 12.6. Equipment Load
      • 12.7. Infiltration Air Load
      • 12.8. Miscellaneous Heat Sources
      • 12.9. Moisture Gain Through Permeable Walls and Ceilings
      • 12.10. Fresh Air Load
      • 12.11. Design Concept of Air-Conditioning System
      • 12.12. Bypass Factor
      • 12.13. Sensible Heat Process: Heating or Cooling
      • 12.14. Latent Heat Process: Humidification or Dehumidification
      • 12.15. Total Heat Process
      • 12.16. Sensible Heat Factor (SHF)
      • 12.17. Methods of Drawing the SHF Line on the Psychrometric Chart
    • Chapter 13: Air-Conditioning Systems and Estimation of Cooling Load
      • Abstract
      • 13.1. Introduction
      • 13.2. Types of Air-Conditioning Systems for the Cold Storages
    • Chapter 14: Evaporators
      • Abstract
      • 14.1. Introduction
      • 14.2. Factors Considered in the Design of Evaporators
      • 14.3. Classification of Evaporators
      • 14.4. Extended Surface Evaporators
    • Chapter 15: Refrigerant Compressors
      • Abstract
      • 15.1. Thermodynamics of Compression Process
      • 15.2. Centrifugal Compressors (Arora and Domukundwar, 2004)
      • 15.3. Screw Compressors
      • 15.4. Rotary Compressors
      • 15.5. Pressure–Enthalpy Charts
      • 15.6. Worked out Problems
    • Chapter 16: Condensers
      • Abstract
      • 16.1. Introduction
      • 16.2. Heat Rejection Ratio
      • 16.3. Types of Condensers
      • 16.4. Water-Side Coefficient
      • 16.5. Air-Side Coefficient
      • 16.6. Condenser Tubes with Integral Fins
      • 16.7. Heat Transfer in Condenser
      • 16.8. Examples
    • Chapter 17: Expansion Devices
      • Abstract
      • 17.1. Introduction
      • 17.2. Capillary Tube
      • 17.3. Automatic (Constant Pressure) Expansion Valve
      • 17.4. Thermostatic Expansion Valve
    • Chapter 18: Spray Ponds and Cooling Towers
      • Abstract
      • 18.1. Spray Pond
      • 18.2. Cooling Towers
      • 18.3. Classification of Cooling Towers
      • 18.4. Performance of Cooling Towers
      • 18.5. Maintenance of Cooling Towers
    • Chapter 19: Fans
      • Abstract
      • 19.1. Introduction
      • 19.2. Types of Fans
      • 19.3. Fan Horsepower and Efficiency
      • 19.4. Factors Affecting Fan Selection
      • 19.5. Centrifugal Fan Laws
      • 19.6. Performance Curves
      • 19.7. Fan Selection
      • 19.8. General Performance
      • 19.9. Adoption of Fan to the System
      • 19.10. Variable Air Volume Method
    • Chapter 20: Transmission and Distribution Systems of Cool Air
      • Abstract
      • 20.1. Introduction
      • 20.2. Room Air Distribution
      • 20.3. Types of Supply Air Outlets
      • 20.4. Factors Considered in Air Distribution Systems
      • 20.5. Consideration for Selection and Location of Outlet
      • 20.6. Air Distribution
      • 20.7. Systems for Injecting the Conditioned Air
      • 20.8. Air Distribution Methods
    • Chapter 21: Heat and Water Vapor Transfer in Cold Storage
      • Abstract
      • 21.1. Introduction
      • 21.2. Heat Transfer
      • 21.3. Surface Conductance
      • 21.4. Solar Air Temperature
      • 21.5. Air Spaces
      • 21.6. Theory of Water Vapor Diffusion
    • Chapter 22: Thermal and Vapor Insulation Materials
      • Abstract
      • 22.1. Introduction
      • 22.2. Basic Uses of Insulation Materials
      • 22.3. Heat Transfer
      • 22.4. Modern Insulating Materials
      • 22.5. Characteristics of Insulation Materials
      • 22.6. Water Vapor Transportation
      • 22.7. Types of Insulation Materials
      • 22.8. Insulation Applied to Buildings
      • 22.9. Floor Insulation
      • 22.10. Low Temperature Cold Storages
      • 22.11. Protection Against Freezing of the Soil
      • 22.12. Roof Insulation
      • 22.13. Insulation of Pipes and Vessels
      • 22.14. Thickness of Insulation
      • 22.15. Gas-Tight Insulation
      • 22.16. Application Methods of Insulation Materials
      • 22.17. Wall Insulation
      • 22.18. Pressure Protection
    • Chapter 23: Design of Small-Capacity Cold Storages
      • Abstract
      • 23.1. Introduction
      • 23.2. Comfort Air-Conditioning
      • 23.3. Cold Storage
      • 23.4. Design of a Precooling Chamber for Onions
      • 23.5. Design of Cold Store for Apples
      • 23.6. Design of a Mini Cold Storage
      • 23.7. Special Cases
    • Chapter 24: Dimensions–Layout–Stacking Methods for Cold Storage
      • Abstract
      • 24.1. Data Needed for Determining the Dimensions of Cold Storage
      • 24.2. Relationship Among Length, Width, and Height of a Cold Store
      • 24.3. General Layout of a Cold Store
      • 24.4. Installation of Air-Conditioning Machinery
      • 24.5. Feeding the Evaporators
      • 24.6. Condensers
      • 24.7. Operation of Cold Rooms
      • 24.8. Stacking Methods
    • Chapter 25: Transportation of Fruits, Vegetables, and Flowers
      • Abstract
      • 25.1. Introduction
      • 25.2. Types of Transportation
      • 25.3. Stacking Patterns
      • 25.4. Guidelines for Best Use of Refrigerated Transport
      • 25.5. Refrigerated Transportation Foundation Temperature Limit
      • 25.6. Control Systems in Transport Vehicles
      • 25.7. Dry Ice Refrigeration
      • 25.8. Liquid Nitrogen or Liquid Carbon Dioxide Spray
      • 25.9. Mechanical Refrigeration with Independent Engine or Electric Motor
      • 25.10. Marine Refrigeration
      • 25.11. Bottom Air Delivery System
      • 25.12. Refrigerated Railway Cars
      • 25.13. Air Transportation
    • Chapter 26: Instrumentation and Climate Management in Cold Storage
      • Abstract
      • 26.1. Process Control
      • 26.2. Automatic Control
      • 26.3. Sensing Elements
      • 26.4. Pneumatic Actuators
      • 26.5. Pressure and Flow Transducers
      • 26.6. Humidity-Sensitive Elements
      • 26.7. Actuating Elements
      • 26.8. Computer-Based Control
      • 26.9. Controls in Refrigeration Equipment
      • 26.10. Controlling Room Conditions at Partial Load
  • Part III: Controlled Atmosphere for Storage (CAS) Horticulture Produce
    • Chapter 27: Operation, Maintenance, and Energy Conservation in Cold Storages
      • Abstract
      • 27.1. Refrigerated Storage Plant Operation
      • 27.2. Energy Conservation
      • 27.3. Plant Maintenance
    • Chapter 28: Controlled Atmosphere Storage
      • Abstract
      • 28.1. Gas Regimes
      • 28.2. Normal and Subnormal Regimes
      • 28.3. Categories of Storages Operated with Controlled Regimes
      • 28.4. Methods to Maintain Desired CO2 to O2 Ratio in the Controlled Atmosphere Chamber
      • 28.5. Establishment of Gas Regime Through Physiological Activity of the Fruit
    • Chapter 29: Biochemical Considerations of Controlled Atmosphere Storage
      • Abstract
      • 29.1. Metabolic Effects of a Controlled Atmosphere
      • 29.2. Physiological Effects of O2 Concentration
      • 29.3. Temperature and O2–C2H4 Interactions
      • 29.4. Physiological Effects of CO2 Concentration
      • 29.5. C2H4–CO2 Interaction
      • 29.6. Combined Effects of CO2, O2, and Temperature
      • 29.7. Humidity and C2H4 During Storage
      • 29.8. Postcontrolled Atmosphere Storage Behavior
      • 29.9. Carbon Monoxide
      • 29.10. Produce Considerations in Controlled Atmosphere Storage
      • 29.11. The Devaux Effect
    • Chapter 30: Gas Exchange Mechanisms in Controlled Atmosphere Storage
      • Abstract
      • 30.1. Introduction
      • 30.2. Respiration of Fruits and Vegetables
      • 30.3. Specificity of Fruit Respiration
      • 30.4. Diffusion Theory
      • 30.5. Film Theory
      • 30.6. Liquid–Solid Mass Transfer
      • 30.7. Homogeneous Reactions
      • 30.8. Basic Reaction Theory
      • 30.9. Reaction Rate
      • 30.10. Reaction Kinetics
    • Chapter 31: Mass Balance Principles Applied to Controlled Atmosphere Chambers
      • Abstract
      • 31.1. General Mass Balance Equation
      • 31.2. Unsteady-State Mass Balance Applied to a Reactor Chamber
      • 31.3. Derivation of a Differential Equation Using Unsteady-State Balance
      • 31.4. Mass Balance Applied to Real Controlled Atmosphere Chambers
    • Chapter 32: Gas Generators for Controlled Atmosphere Storage
      • Abstract
      • 32.1. Low-Cost Methods for Controlled Atmosphere Storage
      • 32.2. Low-Cost Controlled Atmosphere Storage for Pallet Loads
      • 32.3. Ethylene Control
      • 32.4. Low-Cost Controlled Atmosphere Plastic Tent for Bananas
      • 32.5. High-Cost Methods for Controlled Atmosphere Storage
      • 32.6. Controlled Atmosphere Chamber
      • 32.7. Gas Generators
      • 32.8. Fuels for Gas Preparation
      • 32.9. Types of Generators
      • 32.10. Efficiency of Generators
      • 32.11. Calculation of Pull-Down Time
      • 32.12. Factors Affecting Time of Stabilization
      • 32.13. Design Gas Levels
      • 32.14. Air Infiltration Rate
    • Chapter 33: Equipment for Producing and Regulating Controlled Atmosphere
      • Abstract
      • 33.1. Scrubbers
      • 33.2. Ethylene Control System
      • 33.3. Oxygen Control Systems
      • 33.4. Liquid Nitrogen Atmospheric Generators
      • 33.5. Gas Separator Systems
      • 33.6. Hollow-Fiber Membrane Systems
      • 33.7. Hypobaric Storage
      • 33.8. Diffusion Gas Exchanger (Marcellin System)
      • 33.9. Establishment of Gas Regime
      • 33.10. Operations Required to Start the Gas Exchanger
      • 33.11. Pallet Package System
      • 33.12. Atmolysair System
      • 33.13. Automated Controlled Atmosphere Control Systems
      • 33.14. Instrumentation for Controlled Atmosphere Chambers
    • Chapter 34: Design, Construction, and Operation of Controlled Atmosphere Storage Chambers
      • Abstract
      • 34.1. Volume Planning
      • 34.2. Hermetic Sealing and Gas Insulation
      • 34.3. Laying the Gas Insulation Materials
      • 34.4. New Methods of Hermetic Sealing: Atmostable Method
      • 34.5. Tests for Airtightness of Controlled Atmosphere Storage
      • 34.6. Determination of Gas Chamber Tightness
      • 34.7. Instruments for Testing the Airtightness of Chambers
      • 34.8. Design and Layouts of Commercial Controlled Atmosphere Chambers
      • 34.9. Air-Conditioning Equipment for Controlled Atmosphere Chambers
      • 34.10. Important Features for Successful Operation of Controlled Atmospheres
      • 34.11. Storage with Normal Gas Mixture
      • 34.12. Storage with Subnormal Gas Mixture
      • 34.13. N2 Management in the Controlled Atmospheres
      • 34.14. CO2 Management in Controlled Atmospheres
      • 34.15. Observations for Successful Controlled Atmosphere Operation
  • Part IV: Modified Atmosphere Storage
    • Chapter 35: An Overview of Modified Atmosphere Storage
      • Abstract
      • 35.1. Modified Atmosphere
      • 35.2. Modified Atmosphere Packaging
      • 35.3. Equilibrium Modified Atmosphere Packaging
      • 35.4. Packaging Techniques
      • 35.5. MAP Gases
      • 35.6. Packaging Films
      • 35.7. Plastic Films for MAP
      • 35.8. Packaging Machinery for MAP
      • 35.9. Development of Argon MAP
      • 35.10. Films for Argon MAP
    • Chapter 36: MAP Technology
      • Abstract
      • 36.1. Introduction
      • 36.2. Gases Used in MAP
      • 36.3. Methods of Creating MA Conditions
      • 36.4. Techniques to Replace Air in MAP
      • 36.5. Gas Scavenger and Generator Systems
      • 36.6. Factors for Selection of Packaging Material
      • 36.7. Flexible Packaging Materials
      • 36.8. Polyolefins
      • 36.9. Methods for Storing Fruits in Polymeric Packets
      • 36.10. Modified Humidity Packaging of Fresh Horticultural Produce
      • 36.11. Estimation of Surface Area of Polymeric Film for MAP
      • 36.12. Development of Vacuum in Polyethylene Packing
      • 36.13. Indices of Failure
    • Chapter 37: Gases and Vapor Applied to MA Processing Operations
      • Abstract
      • 37.1. Introduction
      • 37.2. Quantity of Gases
      • 37.3. P–V–T Relationship for Ideal Gases
      • 37.4. Gas Mixture
      • 37.5. Partial Volume
      • 37.6. Liquid Condensation from Gas Mixtures
    • Chapter 38: Shelf Life of Foods
      • Abstract
      • 38.1. Definition
      • 38.2. Shelf Life Dating
      • 38.3. Factors Controlling Shelf Life
      • 38.4. Distribution Environment
      • 38.5. Shelf Life Plots
    • Chapter 39: Kinetics of Food Deteriorative Reactions
      • Abstract
      • 39.1. Introduction
      • 39.2. Sensory Quality
      • 39.3. Rates of Deteriorative Reactions
      • 39.4. Zero-Order Reactions
      • 39.5. First-Order Reactions
      • 39.6. Second-Order Reactions
      • 39.7. nth–Order Reactions
      • 39.8. Reactions Where Product Concentration is Rate Limiting
      • 39.9. Relation Between k and D
      • 39.10. Temperature Dependence of Reaction Rates
      • 39.11. Half-Life
      • 39.12. The Q10 Value
      • 39.13. The Z Value
    • Chapter 40: Water Activity and Shelf Life
      • Abstract
      • 40.1. Introduction
      • 40.2. Definitions of Water Activity
      • 40.3. Sorption Isotherms
      • 40.4. Classification of Sorption Isotherms
      • 40.5. Measurement of Sorption Isotherm
      • 40.6. Mathematical Models of Sorption Isotherms
      • 40.7. Relationship Among aw, Package Material, and Shelf Life
      • 40.8. Determination of Critical Moisture Content
    • Chapter 41: Effect of Logistics Environment on Shelf Life
      • Abstract
      • 41.1. Shelf Life Plots
      • 41.2. The Use of Shelf Life Plots
      • 41.3. Zero-Order Reaction Prediction
      • 41.4. Practical Shelf Life (PSL)
      • 41.5. Prediction by First-Order Reaction
    • Chapter 42: Shelf Life Testing
      • Abstract
      • 42.1. Basic Approach to Determine Shelf Life of Food Products
      • 42.2. Accelerated SL Testing (ASLT)
      • 42.3. Temperature Quotient
      • 42.4. Effect of Q10 on Shelf Life
      • 42.5. Hypothetical Shelf Life Plot
      • 42.6. ASLT Procedure
      • 42.7. Examples of ASLT Procedures
      • 42.8. Problems in the Use of ASLT Procedures
    • Chapter 43: MAP Modeling
      • Abstract
      • 43.1. Introduction
      • 43.2. MAP Modeling
      • 43.3. Estimation of Surface Area of Permeable Film
      • 43.4. Expression of Film Permeability in Terms of Gas Concentration
      • 43.5. Graphical Determination of Suitable Packaging Film
    • Chapter 44: Principles of Enzyme Kinetics
      • Abstract
      • 44.1. Introduction
      • 44.2. Michaelis–Menten Kinetics (Doran, 1995)
      • 44.3. Determination of Enzyme Kinetic Constants for Batch Data
      • 44.4. Lineweaver–Burk Plot
      • 44.5. Eadie–Hofstee and Hanes Plots
      • 44.6. Hanes Plot
      • 44.7. Langmuir Plot
      • 44.8. Noncompetitive Inhibition
    • Chapter 45: Enzyme Kinetics Applied to MAP
      • Abstract
      • 45.1. Introduction
      • 45.2. Respiration Model
      • 45.3. Model for Fresh Produce Respiration
      • 45.4. Gas Exchange in the Pack
      • 45.5. Conclusions
    • Chapter 46: MAP Design with O2 Modeling (Experiments on Tomato Fruit)
      • Abstract
      • 46.1. Introduction
      • 46.2. Basic Approach
    • Chapter 47: Methods of Storing Fruits in Polymeric Packets with MAP
      • Abstract
      • 47.1. Storage in Polyethylene Bags
      • 47.2. Storage in Boxes with Polythene Lining
      • 47.3. Storage in Container with Polythene Lining
      • 47.4. Storage in Polythene Containers with Permeable Packing
      • 47.5. Limitations of the Container Method
      • 47.6. Experimental Results of MAP with Plastics for Fruits
      • 47.7. Consumer Package
      • 47.8. Maximizing MAP Performance
      • 47.9. Points of Importance for Highest Performance of MAP
  • Appendixes
  • Subject Index

Details

No. of pages:
894
Language:
English
Copyright:
© Academic Press 2016
Published:
Imprint:
Academic Press
Paperback ISBN:
9780128033654

About the Author

Chandra Gopala Rao

Affiliations and Expertise

Professor and Head (Retd), Department of Agricultural Engineering, College of Agriculture, ANGR Agricultural University, Rajendranagar, Hyderabad, INDIA