Electronics are used in a wide range of applications including computing, communication, biomedical, automotive, military and aerospace. They must operate in varying temperature and humidity environments including indoor controlled conditions and outdoor climate changes. Moisture, ionic contamination, heat, radiation and mechanical stresses are all highly detrimental to electronic devices and can lead to device failures. Therefore, it is essential that the electronic devices be packaged for protection from their intended environments, as well as to provide handling, assembly, electrical and thermal considerations. Currently, more than 99% of microelectronic devices are plastic encapsulated. Improvements in encapsulant materials, and cost incentives have stretched the application boundaries for plastic electronic packages. Many electronic applications that traditionally used hermetic packages such as military are now using commercial-off-the-shelf (COTS) plastic packages. Plastic encapsulation has the advantages of low cost, smaller form factors, and improved manufacturability. With recent trends in environmental awareness, new environmentally friendly or ' green' encapsulant materials (i.e. without brominated additives) have emerged. Plastic packages are also being considered for use in extreme high and low temperature electronics. 3-D packaging and wafer-level-packaging (WLP) require unique encapsulation techniques. Encapsulant materials are also being developed for micro-electro-mechanical systems (MEMS), bio-MEMS, bio-electronics, and organic light-emitting diodes (O-LEDs). This book offers a comprehensive discussion of encapsulants in electronic applications. The main emphasis is on the encapsulation of microelectronic devices; however, the encapsulation of connectors and transformers is also addressed. This book discusses 2-D and 3-D packaging and encapsulation, encapsulation mate

Key Features

Guidance on the selection and use of encapsulants in the electronics industry, with a particular focus on microelectronics
Coverage of environmentally friendly 'green encapsulants'
Practical coverage of faults and defects: how to analyze them and how to avoid them



Electronics and micro-electronics industry professionals, semiconductor chip and wafer designers, anyone interested in electronic packaging.

Table of Contents

Preface 1 Introduction 1.1 Historical Overview 1.2 Electronic Packaging 1.3 Encapsulated Microelectronic Packages 1.3.1 2D Packages 1.4 Hermetic Packages 1.4.1 Metal Packages 1.4.2 Ceramic Packages 1.5 Encapsulants 1.5.1 Plastic Molding Compounds 1.5.2 Other Plastic Encapsulation Methods 1.6 Plastic versus Hermetic Packages 1.6.1 Size and Weight 1.6.2 Performance 1.6.3 Cost 1.6.4 Hermeticity 1.6.5 Reliability 1.6.6 Availability 1.7 Summary References 2 Plastic Encapsulant Materials 2.1 Chemistry Overview 2.1.1 Epoxies 2.1.2 Silicones 2.1.3 Polyurethanes 2.1.4 Phenolics 2.2 Molding Compounds 2.2.1 Resins 2.2.2 Curing Agents or Hardeners 2.2.3 Accelerators 2.2.4 Fillers 2.2.5 Coupling Agents 2.2.6 Stress-Relief Additives 2.2.7 Flame Retardants 2.2.8 Mold-Release Agents 2.2.9 Ion-Trapping Agents 2.2.10 Coloring Agents 2.2.11 Market Conditions and Manufacturers of Encapsulant Materials 2.2.12 Material Properties of Commercially Available Molding Compounds 2.2.13 Materials Development 2.3 Glob-Top Encapsulants 2.4 Potting and Casting Encapsulants 2.4.1 Dow Corning Materials 2.4.2 General Electric Materials 2.5 Underfi ll Encapsulants 2.6 Printing Encapsulants 2.7 Environmentally Friendly or “Green” Encapsulants 2.7.1 Toxic Flame Retardants 2.7.2 Green Encapsulant Material Development 2.8 Summary References 3 Encapsulation Process Technology 3.1 Molding Technology 3.1.1 Transfer Molding 3.1.2 Injection Molding 3.1.3 Reaction-Injectio


No. of pages:
© 2009
William Andrew
Electronic ISBN:
Print ISBN:
Print ISBN:

About the authors