Description

This book is written for an introductory course in space technology. It is intended for senior or graduate level aerospace engineering students and professional engineers seeking a thorough understanding of the aerospace aspects of space systems. As such it focuses on the primary physics and engineering fundamentals necessary to understand and design space based systems. The book does not include the basics of spacecraft electronics, because this is covered in many systems and electronics books and is typically covered in follow-up courses.

Key Features

@bul:* Derived from the author's thirty years of experience in the aerospace industry and several years of university teaching experience * More than 130 illustrations * Advanced subjects and problems indicated by asterisks(*)allow the reader and the instructor to omit topics without losing continuity * All chapters correspond to the engineering subdivisions typically found in the aerospace industry * Includes United States and international technologies * Extensive appendix of important data, not easily located in other sources * The book does not include the basics of spacecraft electronics

Readership

Graduate students in mechanical and aerospace engineering; engineers and physicists who desire a basic background in space vehicles; engineering societies, and industrial contractors with courses in, or research grants on, space vehicle design.

Table of Contents

Preface. Reference Frames and Time. Reference Frames. Motion in Accelerated Reference Frames. Example: The Yo-Yo Despin Mechanism. Euler Angles and Transformations of Coordinates. Time Intervals and Epoch. Forces and Moments. Gravity. Thrust. Aerodynamic Forces and Moments. Free Molecule Flow. Solar Radiation Pressure. Atmospheric Entry. Orbits and Trajectories in an Inverse Square Field. Kepler Orbits and Trajectories. Position as a Function of Time. D'Alembert and Fourier-Bessel Series. Orbital Elements. Spacecraft Visibility Above the Horizon. Satellite Observations and the f and g Series. Special Orbits. Perturbations by Other Astronomical Bodies. Planetary Fly-By and Gravity Assist. Relativistic Effects. Chemical Rocket Propulsion. Configurations of Liquid-Propellant Chemical Rocket Motors. Configurations of Solid-Propellant Motors. Rocket Stages. Idealized Model of Chemical Rocket Motors. Ideal Thrust. Rocket Motor Operation in the Atmosphere. Two and Three-Dimensional Effects. Critique of the Ideal Model. Elements of Chemical Kinetics. Chemical Kinetics Applications to Rocket Motors Liquid Propellants. Propellant Tanks. Propellant Feed systems of Launch Vehicles. Thrust Chambers of Liquid-Propellant Motors. Pogo Instability and Prevention. Thrust Vector Control. Engine Control and Operations. Liquid-Propellant Motors and Thrusters on Spacecraft. Components of Solid-Propellant Rocket Motors. Hybrid-Propellant Rocket Motors. Orbital Maneuvers. Minimum Energy Paths. Lambert's Theorem. Maneuvers with Impulsive Thrust. Hohmann Transfers. Other Transfer Trajectories. On-Orbit Drift. Launch Windows. Injection Errors and Their Corrections. On-Orbit Phase Changes. Rendez-Vous Maneuvers. Gravity Turn. Attitude Control. Principal Axes and Moments of Inertia of Spacecraft. The Euler Equations for Time-Dependent Moments of Inertia. The Torque-Free Spinning Body. Attitude Control Sensors. Attitude Control Actuators. Spin-Stablilized Vehicles. Gravity Gradient Stabilization

Details

No. of pages:
329
Language:
English
Copyright:
© 1999
Published:
Imprint:
Academic Press
Print ISBN:
9780124929401
Electronic ISBN:
9780080505480

About the author

Rudolph Meyer

Rudolph Meyer is well known in the aerospace engineering community with over 30 years of experience. Dr. Meyer was the Division General Manager and Chief Engineer for The Aerospace Corporation. Dr. Meyer is currently an Adjunct Professor in the Mechanical and Aerospace Engineering Department at the University of California, Los Angeles. He is a Fellow of the American Institute of Aeronautics and Astronautics. The author also has received the U.S. Air Force Space Division Excellence Award. He has also received appointment as a Regents Lecture at the University of California. Dr. Meyer is the author of more than 50 papers in professional journals and he holds 13 patents.

Reviews

"If Rudolph Meyer is writing the book, it will be of the highest quality. Meyer is one of the most respected aerospace engineers in the world." WALLACE FOWLER, University of Texas