Electron Paramagnetic Resonance of d Transition Metal Compounds - 1st Edition - ISBN: 9780444898524, 9781483291499

Electron Paramagnetic Resonance of d Transition Metal Compounds, Volume 16

1st Edition

Authors: F.E. Mabbs D. Collison
eBook ISBN: 9781483291499
Imprint: Elsevier Science
Published Date: 5th November 1992
Sales tax will be calculated at check-out Price includes VAT/GST
15% off
15% off
15% off
15% off
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Preface. 1. The Electron Paramagnetic Resonance Experiment. 2. Spin Doublets in an Applied Magnetic Field: A Qualitative Treatment. 3. The Quantitative Description of the Spectra from Spin Doublets Interacting with an Applied Magnetic Field Only. 4. The Spectra from Spin Doublets Interacting with a Nuclear Spin: A Qualitative Treatment. 5. Spectra of Spin Doublets Interacting with a Nuclear Spin: A Quantitative Treatment. 6. Nuclear Quadrupole and Nuclear Zeeman Effects in Spin Doublets. 7. Spectrum Simulation for Spin Doublets. 8. Metal Ions in Cubic and Axial Ligand Fields. 9. The Relationship between the Spin-Hamiltonian Parameters and the Electronic Structures of Spin Doublet Paramagnets. 10. Paramagnets with S ⟩ 1/2. 11. Monomeric Spin Triplets: Qualitative and Quantitative Aspects. 12. Monomeric Spin Quartet Paramagnets. 13. Monomeric Spin Quintets: Qualitative and Quantitative Aspects. 14. Monomeric Spin Sextet Paramagnets. 15. Polynuclear Transition Metal Compounds. 16. Simulation of Spectra for Paramagnets with Multiple Unpaired Electrons. 17. Extended Electron Exchange in Crystals. 18. Relaxation, Linewidths, Determination of Concentrations, and Microwave Power Saturation. Appendices. Some physical properties of selected solvents. Physical constants and conversion factors. Spin-Hamiltonians, operator equivalents and some relationships between angular momentum operators. Direction cosines and transformation of axes. Some useful mathematical relationships. Some properties of nuclei with non-zero nuclear spin and hyperfine interactions parameters. Polar coordinates, Cartesian coordinates, wavefunctions, orbitals. Determinantal wavefunctions. Inter-electron repulsion calculations. The effect of operators such as R&dgr;/&dgr;x. Dipole-dipole interactions and the point-dipole approximations. Expanded FIR diagrams for S=1, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2. Mean values of functions and the methods of moments. Subject and Keyword Index. Chemical Index.


Electron paramagnetic resonance (epr) spectroscopy is a sensitive and versatile method of studying paramagnets, which is finding increasing use in chemistry, biochemistry, earth and materials sciences.

The technique is treated both qualitatively and quantitatively, with a progressive increase in sophistication in each succeeding chapter. Following a general introductory chapter, the first half of the book deals with single unpaired electron systems and considers both metal and ligand Zeeman, hyperfine and quadrupole interactions. The simulation of these spectra is discussed, followed by the relationship between spin-Hamiltonian parameters and models of the electronic structures of paramagnets. The second half of the book treats multiple unpaired electron systems using the same philosophy. An introduction to the epr properties of cluster compounds and of extended exchanging systems is also given. There is a chapter on linewidths and lineshapes, and an extensive appendix containing much additional information. A wide-ranging library of simulated and experimental spectra is given, as well as graphical data which should aid spectrum interpretation. Each chapter contains key references and there is a substantial subject and keyword index.

This book is designed to teach epr spectroscopy to students without any previous knowledge of the technique. However, it will also be extremely useful to researchers dealing with paramagnetic d transition metals.


© Elsevier Science 1992
Elsevier Science
eBook ISBN:


@qu:I recommend this excellent book to inorganic chemists and EPR spectroscopists for its commendable clarity, attention to detail and comprehensive coverage. @source:Spectroscopy Europe

Ratings and Reviews

About the Authors

F.E. Mabbs Author

D. Collison Author

Affiliations and Expertise

Department of Chemistry, University of Manchester, Manchester, UK