Ecological Networks in an Agricultural World

Ecological Networks in an Agricultural World

1st Edition - November 22, 2013

Write a review

  • Editors: Guy Woodward, David Bohan
  • Hardcover ISBN: 9780124200029
  • eBook ISBN: 9780124200074

Purchase options

Purchase options
Available
DRM-free (EPub, PDF, Mobi)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

The theme of this volume is to discuss the Ecological Networks in an Agricultural World. The volume covers important topics such Networking Agroecology, Construction and Validation of Food-webs using Logic-based Machine Learning and Text-mining and Eco-evolutionary dynamics in agricultural networks.  

Key Features

  • Updates and informs the reader on the latest research findings
  • Written by leading experts in the field
  • Highlights areas for future investigation

Readership

Ecologists, environmentalists

Table of Contents

  • Series Page

    Contributors

    Preface: Editorial Commentary: The Potential for Network Approaches to Improve Knowledge, Understanding, and Prediction of the Structure and Functioning of Agricultural Systems

    Acknowledgements

    References

    Chapter One. Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions

    Abstract

    1 Introduction

    2 What is a Network?

    3 The Agricultural Landscape as a Network of Agricultural, Semi-natural and Natural Habitats

    4 Linking Structure, Functioning and Services

    5 Evaluating and Predicting Ecosystem Change

    6 Conclusion

    References

    Glossary

    Chapter Two. Connecting the Green and Brown Worlds: Allometric and Stoichiometric Predictability of Above- and Below-Ground Networks

    Abstract

    Abbreviations

    1 Introduction

    2 Aims and Rationale

    3 Can a Stoichiometrically Explicit First Trophic Level Be Parameterised?

    4 The Advantages of Stoichiometric Plasticity

    5 Constrained Resources, Isotopic Signatures and Networks

    6 Antagonism Above, Mutualism Below: Nature or Agriculture?

    7 Scaling Stoichiometry Provides a Bridge to Ecosystem Processes

    8 Be Explicit: Can We Reach a Consensus?

    Acknowledgements

    References

    Chapter Three. Empirically Characterising Trophic Networks: What Emerging DNA-Based Methods, Stable Isotope and Fatty Acid Analyses Can Offer

    Abstract

    1 Introduction

    2 Molecular Approaches to Analyse Trophic Interactions

    3 Stable Isotope Analysis

    4 Fatty Acid Analysis

    5 Which Approach to Choose, How to Start and How to Interpret the Data?

    Acknowledgements

    References

    Glossary

    Chapter Four. Construction and Validation of Food Webs Using Logic-Based Machine Learning and Text Mining

    Abstract

    1 Introduction

    2 Methods

    3 Results

    4 Discussion and Conclusions

    Acknowledgements

    References

    Chapter Five. Interaction Networks in Agricultural Landscape Mosaics

    Abstract

    1 Introduction

    2 Ecological Patterns and Processes in Spatially Structured Ecosystems

    3 The Goals of Agricultural Landscape Mosaics Studies: Management for Crop Production and Other Ecosystem Services

    4 Specific Properties of Agricultural Landscape Mosaics: Temporal and Spatial Heterogeneity

    5 Metaecosystems and Agricultural Landscape Mosaics

    6 Conclusion

    Acknowledgements

    References

    Chapter Six. Eco-Evolutionary Dynamics of Agricultural Networks: Implications for Sustainable Management

    Abstract

    1 Introduction

    2 Within Field, Applying Evolutionary Perspectives to the Selection of Agricultural Species

    3 Disturbances Due to Agriculture: Implications for Eco-Evolutionary Dynamics Within Surrounding Ecosystems

    4 Accounting for Spatial Heterogeneities: Dispersal, Fragmentation, and Evolution in Agricultural Landscapes

    5 Perspectives and Challenges

    Acknowledgements

    References

    Glossary

    Chapter Seven. Modelling Interaction Networks for Enhanced Ecosystem Services in Agroecosystems

    Abstract

    1 Introduction

    2 Which Network Model for Which Ecosystem Service Question?

    3 Toward a Comprehensive Approach That Links Networks and Services

    4 Conclusions and Future Directions

    Acknowledgements

    References

    Index

    Advances in Ecological Research Volume 1–49

Product details

  • No. of pages: 524
  • Language: English
  • Copyright: © Academic Press 2013
  • Published: November 22, 2013
  • Imprint: Academic Press
  • Hardcover ISBN: 9780124200029
  • eBook ISBN: 9780124200074

About the Serial Volume Editors

Guy Woodward

Guy Woodward is Professor of Ecology in the Department of Life Sciences at Imperial College London and Series Editor for Advances in Ecological Research. He has authored over 100 peer-reviewed publications, including recent papers in Nature, Science and Nature Climate Change, with a strong emphasis on understanding and predicting how aquatic ecosystems and food webs respond to a wide range of biotic and abiotic stressors, including climate change, chemical pollution, habitat degradation and invasive species. Much of this work covers multiple scales in space and time and also a range of organisational levels - from genes to ecosystems. His research group and ongoing collaborations span the natural and social sciences, reflecting the need for multidisciplinary approaches for addressing the environmental challenges of the 21st Century.

Affiliations and Expertise

Department of Life Sciences, Imperial College London, UK

David Bohan

Dave Bohan is an agricultural ecologist with an interest in predator-prey regulation interactions. Dave uses a model system of a carabid beetle predator and two agriculturally important prey; slugs and weed seeds. He has shown that carabids find and consume slug prey, within fields, and that this leads to regulation of slug populations and interesting spatial ‘waves’ in slug and carabid density. The carabids also intercept weed seeds shed by weed plants before they enter the soil, and thus carabids can regulate the long-term store of seeds in the seedbank on national scales. What is interesting about this system is that it contains two important regulation ecosystem services delivered by one group of service providers, the carabids. This system therefore integrates, in miniature, many of the problems of interaction between services.

Dave has most recently begun to work with networks. He developed, with colleagues, a learning methodology to build networks from sample date. This has produced the largest, replicated network in agriculture. One of his particular interests is how behaviours and dynamics at the species level, as studied using the carabid-slug-weed system, build across species and their interactions to the dynamics of networks at the ecosystem level.

Affiliations and Expertise

Agricultural Ecologist, UMR 1347 Agroecologie, Dijon, France

Ratings and Reviews

Write a review

There are currently no reviews for "Ecological Networks in an Agricultural World"