Earth's Oldest Rocks - 2nd Edition - ISBN: 9780444639011

Earth's Oldest Rocks

2nd Edition

Editors: Martin van Kranendonk Vickie Bennett Elis Hoffmann
Paperback ISBN: 9780444639011
Imprint: Elsevier
Published Date: 1st September 2018
Page Count: 1050
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Earth’s Oldest Rocks, Second Edition, is the only single reference source for geological research of early Earth. This new edition is an up-to-date collection of scientific articles on all aspects of the early history of the Earth, from planetary accretion at 4.567 billion years ago (Ga), to the onset of modern-style plate tectonics at 3.2 Ga. Since the first edition was published, significant new advances have been made in our understanding of events and processes on early Earth that correspond with new advances in technology. The book includes contributions from over 100 authors, all of whom are experts in their respective fields.

The research in this reference concentrates on what is directly gleaned from the existing rock record to understand how our planet formed and evolved during the planetary accretion phase, formation of the first crust, the changing dynamics of the mantle and style of tectonics, life’s foothold and early development, and mineral deposits. It is an ideal resource for academics, students and the general public alike.

Key Features

  • Features more than 150 pages of new material, including new chapters on topics like early solar system materials, oldest evidence of life on Earth, and modelling early tectonics
  • Contains comprehensive reviews of areas of ancient lithosphere on Earth, of planetary accretion processes, and of meteorites
  • Focuses on specific aspects of early Earth, including the oldest putative life forms, evidence of the composition of the ancient atmosphere-hydrosphere, and the oldest evidence for subduction-accretion
  • Presents an overview of geological processes and a model of the tectonic framework of early Earth

Readership

Researchers and advanced undergraduate and graduate students in geology, Precambrian geology, tectonics, geochemistry and petrology, geochronology, and economic geology

Table of Contents

Preface: Aims, scope, and outline of the book
  Martin Julian Van Kranendonk, Vickie Bennett and J. Elis Hoffmann

Section 1: Getting started
1. Early solar system materials, processes, and chronology
  Yuri Amelin
2. Origin of the Earth and the Late Heavy Bombardment
  Marc Norman
3. Early Earth atmosphere and oceans
  James Kasting

Section 2: Overviews of Early Earth processes
4. Modelling early Earth tectonics: The case for stagnant lid behaviour in Early Earth
  Craig O'Neill
5. The earliest subcontinental lithospheric mantle
  Bill Griffin
6. Distribution and geochemistry of komatiites and basalts through the Archean
  Stephen J. Barnes and Nick Arndt
7. The formation of tonalites-trondjhemites-granodiorites and of the early continental crust
  J. Elis Hoffmann and JF Moyen
8.  Early Archean asteroid impacts on Earth: Stratigraphic and isotopic age correlations and possible geodynamic consequences
  Alexandra Krull Davatzes and Steven Goderis
9. Palaeoarchean (3.6-3.2Ga) mineral systems in the context of continental crust building and the role of mantle plumes
  Franco Pirajno and David L. Huston
10. Origin of Paleoarchean sulfate deposits
  Pascal Philippot

Section 3: The most ancient remnants
11. Earth’s Oldest Rocks and Minerals
  Kent Condie
12. The oldest terrestrial mineral record: Thirty years of research on Hadean zircon from Jack Hills, Western Australia
  Aaron J. Cavosie
13. Evidence of Hadean to Paleoarchean crust in the Youanmi and Southwest terranes, and Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia
  Stephen Wyche, Yongjun Lu and Michael T.D. Wingate
14. Hadean to Paleoarchean rocks and zircons in China
  Yusheng Wan, Liu D, Xie H, Alfred Kröner, Wilde Alexander Simon, Dong Chunyan, Shoujie Liu, Shiwen Xie and Mingzhu Ma
15. The Acasta Gneiss Complex
  Jesse R. Reimink
16. The Nuvvuagittuq greenstone belt: A glimpse of Earth’s earliest crust
  Jonathan O'Neil
17. The 3.9-3.6 Ga Itsaq Gneiss Complex of Greenland: Quasi-uniformitarian geodynamics towards the end of Earth’s first billion years
  Allen Nutman
18. The Narryer Terrane, Yilgarn Craton, Western Australia: review and recent developments
  Tony Ivan Kemp

Section 4: Well-preserved granitoid-greenstone terrains
19. Paleoarchean development of a continental nucleus: the East Pilbara Terrane of the Pilbara Craton, Western Australia
  Martin Julian Van Kranendonk, R. Hugh Smithies and David C. Champion
20. The oldest well-preserved felsic volcanic rocks on Earth: Geochemical clues to the early evolution of the Pilbara Supergroup and implications for the growth of a Paleoarchean protocontinent
  R. Hugh Smithies and Martin Julian Van Kranendonk
21. Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth
  David C. Champion
22. Palaeoarchaean mineral deposits of the Pilbara Craton: genesis, tectonic environment and comparisons with younger deposits
  David L. Huston and Franco Pirajno
23. Early Archean crustal evolution in southern Africa - an updated record of the Ancient Gneiss Complex of Swaziland
  J. Elis Hoffmann and Alfred Kröner
24. Geology of the Barberton Greenstone Belt — A unique record of crustal development, surface processes, and early life 3.55 to 3.2 Ga
  Gary R. Byerly, Donald R. Lowe and Christoph Heubeck
25. TTG plutons of the Barberton granitoid-greenstone terrain, southern Africa
  JF Moyen
26. Tectono-metamorphic controls on Archaean gold mineralisation in the Barberton Greenstone Belt, South Africa: An example from the New Consort gold mine
  Annika Dziggel

Section 5: Filling the gaps
27. Paleoarchean gneisses in the Minnesota River Valley and northern Michigan, USA
  Marion Bickford
28. The Assean Lake Complex: Ancient crust at the northwestern margin of the Superior Craton, Manitoba, Canada
  Christian O. Böhm
29. Oldest rocks of the Wyoming Craton
  Kevin R. Chamberlain and Paul A. Mueller
30. Early crustal evolution as recorded in the granitoids of the Singhbhum and western Dharwar cratons, India
  Sukanta Dey
31. Palaeoarchaean crustal evolution of the Bundelkhand Craton, north-central India
  Lopamundra Saha
32. Paleoarchean rocks in the Fennoscandian Shield
  Pentti Sakari Hölttä
33. Archean crustal evolution in the Ukrainian shield
  Stefan Claesson, Gennadiy Vladimirovich Artemenko, Светлана V. Bogdanova and Leonid Shumlyanskyy
34. The Palaeoarchaean record of the Zimbabwe Craton
  Axel Hofmann
35.  Ancient Antarctica: The Archean of the East Antarctic Shield
  Simon Harley

Section 6: Life
36. Implications of carbonate and chert isotope records for the early Earth
  Graham A. Shields
37. Archean cherts: formation processes and paleo-environments
  Morgane Marine Ledevin
38. The significance of carbonaceous matter to understanding life processes on early Earth
  Mark Adriaan Van Zuilen
39. Eoarchean Life from the Isua supracrustal belt (Greenland)
  Allen Nutman
40. Depositional setting of the fossiliferous, c. 3480 Ma Dresser Formation, Pilbara Craton: A review
  Martin Julian Van Kranendonk
41. Early Archean (pre-3.0 Ga) cellularly-preserved microfossils and microfossil-like structures from the Pilbara Craton, Western Australia — A review
  Kenichiro Sugitani
42. Traces of early Life from the Barberton Greenstone Belt, South Africa
  Keyron Hickman-Lewis, Frances Westall and Barbara Cavalazzi

Details

No. of pages:
1050
Language:
English
Copyright:
© Elsevier 2019
Published:
Imprint:
Elsevier
Paperback ISBN:
9780444639011

About the Editor

Martin van Kranendonk

Prof. van Kranendonk was born and trained in Canada, receiving his PhD in 1992 and then undertaking a post-doc position at the Geological Survey of Canada from 1992-1994. In 1994, he moved to Australia as an ARC post-doctoral fellow at the University of Newcastle, where he commenced research on the Pilbara. He then joined the Geological Survey of Western Australia in 1997, where he worked for 15 years until the start of 2012, when he accepted a position as Professor of Geology at the University of New South Wales, in Sydney, Australia, where he is the Director of the Australian Centre for Astrobiology. Prof. van Kranendonk is a leading world expert on the early Earth. His main interests are Archean tectonics and the geological setting of early life on Earth. He has appeared on numerous television and radio documentaries on early Earth, and has been involved in educational outreach programs for school children and the general public.

Affiliations and Expertise

Geological Survey of Western Australia, East Perth and Australian Centre for Astrobiology, Macquarie University, Sydney, Australia

Vickie Bennett

Dr. Bennett is a senior geochemist at the Research School of Earth Sciences, Australian National University in Canberra, Australia. She received her PhD in 1989 from the University of California, Los Angeles, and began a post-doctoral fellow position at RSES the same year as part of the “First Billion Years” project where she began collaborative investigations of the oldest rocks in Western Australia and southwest Greenland. In 2000 she became the first tenured female faculty member and is currently Associate Director and Head of the Isotope Geochemistry Group at RSES. Dr. Bennett is an international expert on the geochemistry of the early Earth, particularly as applied to understanding the formation and chemical evolution of the crust and mantle and the origin and development of the oldest continents.

Affiliations and Expertise

Australian National University, Canberra ACT 0200, Australia

Elis Hoffmann

Dr. Hoffmann was born in Germany. He received his B.Sc. and M.Sc. degrees from University of Münster (Germany) and his Ph.D. degree in 2011 from University of Bonn (Germany). After post-doc positions at the Universities of Bonn, Cologne and Berlin, he accepted a lecturer and lab manager position at the Freie Universität Berlin (Germany). He was mapping geologist for the Geological Survey of Denmark and Greenland (GEUS) during several field seasons in the Archean of western Greenland between 2005 and 2007. He carried out field work in the eastern Kaapvaal craton and in the Isua region of Greenland. He is an expert in Archean geology, where his specialty is in combining field geology and advanced analytical techniques in the field of isotope and trace element geochemistry, petrology and geochemical modelling to place constraints on the evolution of the early continental crust and the Archaean mantle.

Affiliations and Expertise

Lecturer and Lab Manager, Department of Earth Sciences, Geochemistry, Free University of Berlin

Ratings and Reviews