
Dynamics of Molecular Excitons
1st Edition
Theories and Applications
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
- Introduction
2. Exciton Hamiltonian
3. Incoherent rate theories of exciton dynamics
4. Computational approaches for coherent exciton dynamics
5. Theories for spectroscopic measurement of exciton dynamics
6. Applications
Description
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject.
The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models.
Rate theories of exciton dynamics, such as Förster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes.
Key Features
- Covers major theories of exciton dynamics in a consciously concise and easily readable way
- Bridges the gap between quantum dynamics working with phenomenological exciton Hamiltonian and quantum chemistry construct reliable models amenable for dynamics calculations from ab initio calculations
- Explores modern nonlinear electronic spectroscopy techniques to probe exciton dynamics, showing how it is applied
Readership
Materials scientists, engineers and physics scientists working in the areas of spectroscopy, exciton dynamics and photonics
Details
- No. of pages:
- 300
- Language:
- English
- Copyright:
- © Elsevier 2020
- Published:
- 1st June 2020
- Imprint:
- Elsevier
- Paperback ISBN:
- 9780081023358
Ratings and Reviews
About the Authors
Seogjoo Jang Author
Seogjoo Jang is Professor of Chemistry at Queens College, City University of New York, USA. His research focuses in the areas of Solar Energy Conversion, Computational Chemistry,, Energy/Charge Transfer Processes and Spectroscopy
Affiliations and Expertise
Professor of Chemistry, Queens College, City University of New York, USA