Defect Structure in Nanomaterials

1st Edition

Authors: J Gubicza
Hardcover ISBN: 9780857092069
eBook ISBN: 9780857096142
Imprint: Woodhead Publishing
Published Date: 1st June 2012
Page Count: 388
147.50 + applicable tax
245.00 + applicable tax
185.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

Nanomaterials exhibit unique mechanical and physical properties compared to their coarse-grained counterparts, and are consequently a major focus of current scientific research. Defect structure in nanomaterials provides a detailed overview of the processing methods, defect structure and defect-related mechanical and physical properties of a wide range of nanomaterials. The book begins with a review of the production methods of nanomaterials, including severe plastic deformation, powder metallurgy and electrodeposition. The lattice defect structures formed during the synthesis of nanomaterials are characterised in detail. Special attention is paid to the lattice defects in low stacking fault energy nanomaterials and metal – carbon nanotube composites. Topics covered in the second part of the book include a discussion of the thermal stability of defect structure in nanomaterials and a study of the influence of lattice defects on mechanical and hydrogen storage properties.

Key Features

  • Gives in-depth, physically based explanations for the relationships between the defect structure and mechanical properties of nanomaterials
  • Covers a wide range of nanomaterials including metals; alloys; ceramics; diamond; carbon nanotubes and their composites
  • Provides a detailed characterization of the lattice defect structure in nanomaterials

Readership

Materials scientists and in the field of nanomaterials.

Table of Contents

List of figures

List of tables

Preface

About the author

Chapter 1: Processing methods for nanomaterials

Abstract:

1.1 Processing of bulk nanomaterials by severe plastic deformation

1.2 Processing of nanomaterials by powder metallurgy

1.3 Production of nanomaterials by electrodeposition

1.4 Nanocrystallisation of bulk amorphous alloys

Chapter 2: Defect structure in bulk nanomaterials processed by severe plastic deformation

Abstract:

2.1 Evolution of dislocation structure and grain size during SPD-processing

2.2 Comparison of defect structures formed by different routes of bulk SPD

2.3 Maximum dislocation density and minimum grain size achievable by SPD of bulk metallic materials

2.4 Excess vacancy concentration due to SPD

Chapter 3: Defect structure in low stacking fault energy nanomaterialsm

Abstract:

3.1 Effect of low stacking fault energy on cross-slip and climb of dislocations

3.2 Defect structure developed in SPD-processed low stacking fault energy pure Ag

3.3 Effect of low stacking fault energy on defect structure in ultrafine-grained alloys

3.4 Grain-refinement mechanisms in low stacking fault energy alloys

Chapter 4: Defects in nanomaterials processed by powder metallurgy

Abstract:

4.1 Development of defect structure during milling

4.2 Defect structure in nanopowders produced by bottom-up approaches

4.3 Effect of consolidation conditions on microstructure of sintered metals

4.4 Defect structure in metals sintered from blends of powders with different particle sizes

4.5 Evolution of microstructure during consolidation of diamond and ceramic nanopowders

Chapter 5: Correlation between defect structure and mechanical properties of nanocrystalline materials

Abstract:

5.1 Effect of grain size on deformation mechanism

Details

No. of pages:
388
Language:
English
Copyright:
© Woodhead Publishing 2012
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9780857096142
Hardcover ISBN:
9780857092069
Paperback ISBN:
9780081016602

About the Author

J Gubicza

Jenő Gubicza is a Professor at Eotvos Lorand University in Budapest, Hungary. He received his PhD and Dr.habil degrees in 1997 and 2005, respectively. Prof. Gubicza’s main research field is the study of microstructure of nanomaterials. He has published two books entitled „Defect structure in nanomaterials” and „X-ray line profile analysis in materials science” in 2012 and 2014, respectively. Prof. Gubicza was awarded the scientific title of Doctor of the Hungarian Academy of Sciences, the Schmid Rezso Prize of Roland Eotvos Physical Society and the Bolyai-plaquette of Hungarian Academy of Sciences. He has published more than 200 papers that have been cited more than 2700 times.

Affiliations and Expertise

Professor at Eotvos Lorand University in Budapest, Hungary.

Reviews

Serves as a useful reference for academics, materials and physics researchers, materials, mechanical and physics engineers, professional in related industries with nanomaterials and nanotechnology., International Journal of Materials Engineering Innovation