Data Literacy - 1st Edition - ISBN: 9780128113066

Data Literacy

1st Edition

How to Make Your Experiments Robust and Reproducible

Authors: Neil Smalheiser
Paperback ISBN: 9780128113066
Imprint: Academic Press
Published Date: 15th September 2017
Page Count: 280
Tax/VAT will be calculated at check-out Price includes VAT (GST)

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Data Literacy: How to Make Your Experiments Robust and Reproducible provides an overview of basic concepts and skills in handling data which are common to diverse areas of science. Readers will gain a better grasp of the steps involved in carrying out a scientific study, and will understand some of the factors that make a study robust and reproducible.

The book covers several major modules, such as experimental design, data cleansing and preparation, statistical analysis, data management and reporting. No specialized knowledge of statistics or computer programming is needed to fully understand the concepts presented.

This book is a valuable source for biomedical and health sciences graduate students and researchers in general who are interested in handling data to make their research reproducible and more efficient.

Key Features

  • Presents the content in an informal tone and with many examples taken from the daily routine at laboratories
  • Provides exercises for self-study, and is an optional book for more technical courses
  • Brings an interdisciplinary approach which may be applied across different areas of sciences

Readership

Bioinformaticians; biomedical and allied health sciences graduate students; graduate students and educated lay persons who are interested in handling data for research

Table of Contents

Part A: Experimental Design
1. “Most published findings are false!”
2. How to identify a promising research problem?
3. Experimental designs: measures, validity, randomization
4. Experimental design: Sampling, bias, hypotheses
5. Positive and negative controls

Part B: Getting a “feel” for your data
6. Refresher on basic concepts of probability and statistics
7. Data cleansing
8. Case studies of data cleansing
9. Hypothesis testing
10. The “new statistics”
11. ANOVA.
12. Nonparametric tests
13. Other statistical concepts you should know

Part C: Data Management
14. Recording and reporting experiments
15. Data sharing and re-use
16. Publishing

Details

No. of pages:
280
Language:
English
Copyright:
© Academic Press 2017
Published:
Imprint:
Academic Press
Paperback ISBN:
9780128113066

About the Author

Neil Smalheiser

Dr. Neil Smalheiser has over 30 years of experience pursuing basic wet-lab research in neuroscience, most recently studying synaptic plasticity and the genomics of small RNAs. He has also directed multi-disciplinary, multi-institutional consortia dedicated to text mining and bioinformatics research, which have created new theoretical models, databases, open source software, and web-based services. Regardless of the subject matter, one common thread in his research is to link and synthesize different datasets, approaches and apparently disparate scientific problems to form new concepts and paradigms. Another common thread is to identify scientific frontier areas that have fundamental and strategic importance, yet are currently under-studied, particularly because they fall “between the cracks” of existing disciplines. This book is based on lecture notes that Dr. Smalheiser prepared for a course he created, “Data Literacy for Neuroscientists”, given to undergraduate and graduate students.

Affiliations and Expertise

Associate Professor, Department of Psychiatry and Psychiatric Institute, University of Illinois School of Medicine, USA