Data Literacy
1st Edition
How to Make Your Experiments Robust and Reproducible
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
Data Literacy: How to Make Your Experiments Robust and Reproducible provides an overview of basic concepts and skills in handling data, which are common to diverse areas of science. Readers will get a good grasp of the steps involved in carrying out a scientific study and will understand some of the factors that make a study robust and reproducible.The book covers several major modules such as experimental design, data cleansing and preparation, statistical analysis, data management, and reporting. No specialized knowledge of statistics or computer programming is needed to fully understand the concepts presented.
This book is a valuable source for biomedical and health sciences graduate students and
researchers, in general, who are interested in handling data to make their research reproducible
and more efficient.
Key Features
- Presents the content in an informal tone and with many examples taken from the daily routine at laboratories
- Can be used for self-studying or as an optional book for more technical courses
- Brings an interdisciplinary approach which may be applied across different areas of sciences
Readership
Bioinformaticians; biomedical and allied health sciences graduate students; graduate students and educated lay persons who are interested in handling data for research
Table of Contents
Part A: Experimental Design
1. “Most published findings are false!”
2. How to identify a promising research problem?
3. Experimental designs: measures, validity, randomization
4. Experimental design: Sampling, bias, hypotheses
5. Positive and negative controls
Part B: Getting a “feel” for your data
6. Refresher on basic concepts of probability and statistics
7. Data cleansing
8. Case studies of data cleansing
9. Hypothesis testing
10. The “new statistics”
11. ANOVA.
12. Nonparametric tests
13. Other statistical concepts you should know
Part C: Data Management
14. Recording and reporting experiments
15. Data sharing and re-use
16. Publishing
Details
- No. of pages:
- 282
- Language:
- English
- Copyright:
- © Academic Press 2017
- Published:
- 11th September 2017
- Imprint:
- Academic Press
- Paperback ISBN:
- 9780128113066
- eBook ISBN:
- 9780128113073
About the Author
Neil Smalheiser
Dr. Neil Smalheiser has over 30 years of experience pursuing basic wet-lab research in neuroscience, most recently studying synaptic plasticity and the genomics of small RNAs. He has also directed multi-disciplinary, multi-institutional consortia dedicated to text mining and bioinformatics research, which have created new theoretical models, databases, open source software, and web-based services. Regardless of the subject matter, one common thread in his research is to link and synthesize different datasets, approaches and apparently disparate scientific problems to form new concepts and paradigms. Another common thread is to identify scientific frontier areas that have fundamental and strategic importance, yet are currently under-studied, particularly because they fall “between the cracks” of existing disciplines. This book is based on lecture notes that Dr. Smalheiser prepared for a course he created, “Data Literacy for Neuroscientists”, given to undergraduate and graduate students.
Affiliations and Expertise
Associate Professor, Department of Psychiatry and Psychiatric Institute, University of Illinois School of Medicine, USA
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.