Data-Driven and Model-Based Methods for Fault Detection and Diagnosis - 1st Edition - ISBN: 9780128191644

Data-Driven and Model-Based Methods for Fault Detection and Diagnosis

1st Edition

Authors: Majdi Mansouri Mohamed-Faouzi Harkat Hazem Nounou Mohamed Nounou
Paperback ISBN: 9780128191644
Imprint: Elsevier
Published Date: 14th February 2020
Page Count: 412
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

The main objective of Data-Driven and Model-Based Methods for Fault Detection and Diagnosis is to develop techniques that improve the quality of fault detection and then utilize these developed techniques to enhance monitoring various chemical and environmental processes. The book provides both the theoretical framework and technical solutions. It starts with reviewing relevant literature, proceeds with a detailed description of developed methodologies, followed by a discussion of the results of developed methodologies, and ends with major conclusions reached from the analysis of simulation and experimental studies. The book is an indispensable resource for researchers in academia and industry and practitioners working in chemical and environmental engineering to do their work safely.

Key Features

  • Outlines latent variable based hypothesis testing fault detection techniques to enhance monitoring processes represented by linear or nonlinear input-space models (such as PCA) or input-output models (such as PLS)
  • Explains multiscale latent variable based hypothesis testing fault detection techniques using multiscale representation to help deal with uncertainty in the data and minimize its effect on fault detection
  • Includes interval PCA (IPCA) and interval PLS (IPLS) fault detection methods to enhance the quality of fault detection
  • Provides model-based detection techniques for improvement of monitoring processes using state estimation-based fault detection approaches
  • Demonstrates the effectiveness of the proposed strategies by conducting simulation and experimental studies on synthetic data

Readership

Researchers in academia and industry and practitioners working in chemical and environmental engineering

Table of Contents

  1. Introduction
    2. Linear latent variable approaches for fault detection
    3. Nonlinear latent variable approaches for fault detection
    4. Multiscale latent variable (MSLV) approaches for fault detection
    5. Interval latent variable (ILV) approaches for fault detection
    6. Model based approaches for fault detection
    7. Conclusions and Perspectives

Details

No. of pages:
412
Language:
English
Copyright:
© Elsevier 2020
Published:
14th February 2020
Imprint:
Elsevier
Paperback ISBN:
9780128191644

About the Author

Majdi Mansouri

Dr. Majdi Mansouri joined the Electrical Engineering Program at Texas A&M University at Qatar, in 2011, where he is currently an associate research scientist. He has over ten years of research and practical experience in systems engineering and signal processing. His work focuses on the utilization of applied mathematics and statistics concepts to develop statistical data and model driven techniques and algorithms for modeling, estimation, fault detection and monitoring, which aim to improve process operations and enhance the data validation. Dr. Majdi Mansouri is the author of more than 145 refereed journal and conference publications and book chapters, and has worked on several projects as a lead principal investigator (LPI), principal investigator (PI) as well as a researcher. In December, 2019, he received the degree of HDR (Accreditation To Supervise Research) of Electrical Engineering from University of Orleans in France. Dr. Mansouri is a member of IEEE.

Affiliations and Expertise

Associate Research Scientist, Electrical Engineering Program, Texas A&M University, Qatar

Mohamed-Faouzi Harkat

Dr. Mohamed-Faouzi HARKAT received his Eng. degree in Automatic control from Annaba University, Algeria in 1996, his Ph.D. degree from Institut National Polytechnique de Lorraine (INPL), France in 2003. He is now Professor in the Department of Electronics at Annaba University, Algeria. His research interests include fault diagnosis, process modelling and monitoring, multivariate statistical approaches and neural networks. Dr. Harkat is the author of more than 100 refereed journal and conference publications and book chapters.

Affiliations and Expertise

Professor, Department of Electronics, Annaba University, Algeria

Hazem Nounou

Dr. Hazem N. Nounou (SM’08) is a professor in the Electrical and Computer Engineering Program and the Assistant Dean for Academic and Student Services at Texas A&M University at Qatar. From 20015-2017, he was the holder of Itochu Professorship. He received the B.S. degree (magna cum laude) from Texas A&M University, College Station, in 1995, and the M.S. and Ph.D. degrees from Ohio State University, Columbus, in 1997 and 2000, respectively, all in electrical engineering. In 2001, he was a Development Engineer for PDF Solutions, a consulting firm for the semiconductor industry, in San Jose, CA. Then, in 2001, he joined the Department of Electrical Engineering at King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, as an Assistant Professor. In 2002, he moved to the Department of Electrical Engineering, United Arab Emirates University, Al-Ain, UAE. In 2007, he joined the Electrical and Computer Engineering Program at Texas A&M University at Qatar, Doha, Qatar, where he is currently a professor. He published more than 200 refereed journal and conference papers and book chapters. He served as an Associate Editor and in technical committees of several international journals and conferences. His research interests include data-based control, monitoring and fault detection, intelligent and adaptive control, control of time-delay systems, system biology, and system identification and estimation. Dr. Nounou is a senior member of IEEE.

Affiliations and Expertise

Professor, Electrical and Computer Engineering Program and Assistant Dean for Academic and Student Services, Texas A&M University, Qatar

Mohamed Nounou

Dr. Mohamed Nounou is a professor of Chemical Engineering at Texas A&M University-Qatar. He received the B.S. degree (Magna Cum Laude) from Texas A&M University, College Station, in 1995, and the M.S. and Ph.D. degrees from the Ohio State University, Columbus, in 1997 and 2000, respectively, all in chemical engineering. From 2000 to 2002, he was with PDF Solutions, a consulting company for the semiconductor industry, in San Jose, CA. In 2002, he joined the Department of Chemical and Petroleum Engineering at the United Arab Emirates University. In 2006, he joined the Chemical Engineering Program at Texas A&M University at Qatar, where he is currently a professor. He has received research funding over $5M and published more than 190 refereed journal and conference papers and book chapters. He also served as an associate editor and in technical committees of several international journals and conferences. His research interests include process modeling, monitoring, estimation, system biology, and intelligent control. He is a senior member of the American Institute of Chemical Engineers (AIChE) and a senior member of the Institute of Electrical and Electronics Engineers (IEEE).

Affiliations and Expertise

Professor of Chemical Engineering, Texas A&M University, Qatar

Ratings and Reviews