Cryogenic Technology and Applications describes the need for smaller cryo-coolers as a result of the advances in the miniaturization of electrical and optical devices and the need for cooling and conducting efficiency. Cryogenic technology deals with materials at low temperatures and the physics of their behavior at these temps. The book demonstrates the ongoing new applications being discovered for cryo-cooled electrical and optical sensors and devices, with particular emphasis on high-end commercial applications in medical and scientific fields as well as in the aerospace and military industries. This book summarizes the important aspects of cryogenic technology critical to the design and development of refrigerators, cryo-coolers, and micro-coolers needed by various commercial, industrial, space and military systems. Cryogenic cooling plays an important role in unmanned aerial vehicle systems, infrared search and track sensors, missile warning receivers, satellite tracking systems, and a host of other commercial and military systems.

Key Features

* Provides an overview of the history of the development of cryogenic technology * Includes the latest information on micro-coolers for military and space applications * Offers detailed information on high-capacity cryogenic refrigerator systems used in applications such as food storage, high-power microwave and laser sensors, medical diagnostics, and infrared detectors


Mechanical engineers working in cryogenics and low temperature material's behavior. Electrical Engineers working in cryo-cooled sensors and optics. Graduate students in mechanical, electrical and optical engineering.

Table of Contents

Chapter 1: Technology advancements and chronological development history of cryogenic technology 1.0 Introduction 1.1 Terms and phenomena associated with cryogenic engineering 1.2 Prominent contributions to the cryogenic technology 1.3 Critical aspects and issues involved in cryogenics 1.4 Benefits from integration of cryogenic technology 1.4.1 Affordability 1.4 2 Availability 1.5 Early applications of cryogenic technology 1.5.1 Cryogenic technology for production of gases 1.5.2 Cryogenic technology for inert gases 1.5.3 Cryogenic technology for aerospace applications 1.5 4 Cryogenic liquid level controller (LLC) 1.5.5 Cryogenic line regulators 1.6 Gas separation process using cryogenic technology 1.7 Industrial applications of cryogenic fluid technology 1.7.1 Liquid neon 1.7.2 Liquid hydrogen 1.7.3 Liquid nitrogen (LIN) 1.8 Heat capacity of commercial refrigerants 1.9 Cryogenic requirements for frozen food industry 1.9.1 Cold storage requirements 1.10 Cryogenic requirements for medical applications 1.10.1 Cryogenic system requirements for high resolution MRI 1.11 Industrial applications of cryogenic technology 1.11.1 Cryopumping 1.11.2 Nuclear radiation testing 1.11.3 Ice-making machines and ice storage systems 1.11.4 Chilled water storage (CWS) systems 1.12 Summary Chapter Two: Effects of heat flow on heat exchanger performance and cooler efficiency 2.0 Introduction 2.1 Early developments in cryogenic technology 2.2 Impact of thermodynamic aspects on cryogenic technolo


No. of pages:
© 2006
Print ISBN:
Electronic ISBN: