COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Creep of Soils - 1st Edition - ISBN: 9780444988225, 9780444599605

Creep of Soils, Volume 68

1st Edition

and Related Phenomena

Author: J. Feda
eBook ISBN: 9780444599605
Imprint: Elsevier Science
Published Date: 25th June 1992
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. Introduction. Macro- and microapproach. Aim of rheological investigations. Creep and the accuracy of its prediction. Limitations of rheological theories. Conception of this book. 2. Examples of the rheological behaviour of geomaterials. Settlement of structures. Dam displacements. Slope displacements. Conclusion. 3. Structure and texture of soils. Introduction. Mathematical and physical modelling of constitutive relations. Structural units. Fabric. Bonding. Internal stress. Structure of some tested soils: Zbraslav sand, Land&sbreve;tejn sand, Loess, Kyjice clay, Sedlec kaolin, Dáblice claystone, Strahov claystone, Conclusion. Changes of soil structure. 4. State parameters of soils. Porosity. Water content. Stress and stress path. Strain. Time. Temperature. Conclusion. 5. Elasticity, viscosity and plasticity. Introduction. Elasticity. Viscosity. Plasticity: Introduction, Rigid-plastic approach, Modelling of constitutive behaviour, Plastic potential approach, Other physically motivated concepts, Rate-type relations. Concluding remarks. 6. Experimental rheology. Introduction. Water content and temperature fluctuations. Choice of the apparatus. Evaluation of the experimental results. 7. Macrorheology. Introduction. Method of rheological models. Method of integral representation. Empirical relations. 8. Microrheology. Introduction. Micromechanical approach. Particle-based conception: Fabric as the principal constitutive factor, Mixed analysis. 9. Primary and secondary consolidation. Introduction. Primary consolidation. Secondary consolidation. Conclusion. 10. Long-term strength of soils. Introduction. Stress – long-term strain diagrams. Long-term strength. Creep failure (rupture). Conclusion. 11. Creep and stress relaxation. Creep. Stress relaxation. Conclusion. 12. Numerical solution of rheological problems. Introduction. Numerical methods: Numerical methods in geomechanics, Finite-element method, Nonlinear techniques, Path-dependent constitutive model. Numerical modelling of creep: Review, Algorithms for computing creep by FEM. Applications: Dams, Tunnels. Conclusions. 13. Concluding comments. Appendix 1. Appendix 2. Bibliography. Author index. Subject index.


In this volume, soil creep is analysed within the framework of other soil-rheological phenomena, such as stress relaxation and long-term resistance, to present an in-depth discussion of the effect of time on soil behaviour. As time is the only state parameter which cannot be entirely modelled in the laboratory, the presented extrapolation is based upon a combination of appropriate theoretical analysis, and the principles of the physical behaviour of soils affected by state parameters such as porosity, water content, stress, strain, time and temperature. Principal macro- and microrheological theories are analysed, and a comprehensive picture of the soil structure and of the effect of state parameters is presented, documented by the author's experiments and illustrated by many examples. The theory of hereditary creep was selected as the best theory serving the author's purpose to propose simple constitutive relations governing creep of soils. The proposed constitutive relations have been implemented into FEM programs and the effect of the time factor has been demonstrated by the solution of such boundary value problems as a dams and underground tunnels. This volume should be of interest to civil engineers, scientists, research and postgraduate students, and advanced undergraduates.


© Elsevier Science 1992
25th June 1992
Elsevier Science
eBook ISBN:

Ratings and Reviews

About the Author

J. Feda

Affiliations and Expertise

Institute of Theoretical and Applied Mechanics of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia