Corrosion of Aluminium

Corrosion of Aluminium

2nd Edition - May 6, 2020

Write a review

  • Author: Christian Vargel
  • Hardcover ISBN: 9780080999258
  • eBook ISBN: 9780080999272

Purchase options

Purchase options
Available
DRM-free (PDF, Mobi, EPub)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Corrosion of Aluminium, Second Edition, highlights the practical and general aspects of the corrosion of aluminium alloys. Chapters help readers new to the topic understand the metallurgical, chemical and physical features of aluminium alloys. Author Christian Vargel adopts a practitioner styled approach that is based on the expertise he has gained during a 40-year career in aluminium corrosion. The book assesses the corrosion resistance of aluminium, a key metric recognized as one of the main conditions for the development of many uses of aluminium in transport, construction, power transmission, and more.

Key Features

  • Features 600 bibliographic references, providing a comprehensive guide to over 100 years of related study
  • Includes numerous illustrations to enhance study
  • Presents practical applications across many industries
  • Provides an accessible reference for both beginners and experts

Readership

Engineers/technicians in the aluminium transformer industry; Students and professors studying materials science, mechanical engineering and structural engineering

Table of Contents

  • Cover image
  • Title page
  • Table of Contents
  • Copyright
  • Dedication
  • Foreword
  • Foreword to the original edition
  • Preface
  • Introductory remarks
  • Part A
  • Chapter A.1. Historical reviews
  • 1.1. Chemically produced aluminium
  • 1.2. Electrochemically produced aluminium
  • Chapter A.2. Physical properties of aluminium
  • Chapter A.3. The advantages of aluminium
  • 3.1. The hymn of the cannonball
  • 3.2. Lightness
  • 3.3. Thermal conductivity
  • 3.4. Electrical conductivity
  • 3.5. Resistance to corrosion
  • 3.6. Suitability for surface treatments
  • 3.7. The diversity of aluminium alloys
  • 3.8. The diversity of semi-products
  • 3.9. The functionality of castings and extrusions functionality
  • 3.10. Ease of use
  • 3.11. Recycling
  • Chapter A.4. Aluminium alloy series
  • 4.1. Alloy series
  • 4.2. Alloying elements
  • 4.3. Additives
  • 4.4. Impurities
  • 4.5. Designation of aluminium alloys
  • Chapter A.5. Cast aluminium alloys
  • 5.1. Principal casting alloys
  • 5.2. Methods of elaboration
  • 5.3. Heat treatments
  • Chapter A.6. Wrought aluminium alloys
  • 6.1. Strain-hardenable alloys
  • 6.2. Age-hardenable alloys
  • Chapter A.7. Selection criteria
  • 7.1. General remarks
  • 7.2. Selecting an alloy
  • 7.3. Principal applications of aluminium and its alloys
  • Part B
  • Chapter B.1. The corrosion of aluminium
  • 1.1. Short historical introduction
  • 1.2. Corrosion: an irreversible phenomenon
  • 1.3. Electrochemical basis for metal corrosion
  • 1.4. Electrical double layer
  • 1.5. Electrochemical basis of metal corrosion
  • 1.6. Electrochemical reactions of aluminium corrosion
  • 1.7. Role of oxygen
  • 1.8. Aluminium as a passive metal
  • 1.9. Aluminium passivity and pH
  • 1.10. Electrochemical equilibrium – Pourbaix diagrams
  • Chapter B.2. The notion of potential
  • 2.1. The standard potential of a metal
  • 2.2. Corrosion potentials
  • 2.3. Pitting potential
  • 2.4. The protection potential of aluminium
  • 2.5. The corrosion potential or open circuit potential
  • 2.6. Mesurement of open circuit potentials
  • 2.7. Parameters for measuring corrosion potentials
  • 2.8. Galvanic series of open circuit potentials
  • 2.9. Meaning of open circuit potentials
  • 2.10. The open circuit potential of aluminium
  • 2.11. The Volta potential
  • Chapter B.3. The oxide film and passivity of aluminium
  • 3.1. The protective role of oxide films
  • 3.2. The mechanism of formation of oxide films on aluminium
  • 3.3. Parameters affecting the formation of oxide films on aluminium
  • 3.4. Rate of reconstitution of the oxide film
  • 3.5. Structure of the oxide film
  • 3.6. Low-temperature oxide film growth
  • 3.7. Oxide film properties
  • 3.8. Influence of pH on aluminium passivation
  • 3.9. Note
  • Chapter B.4. Disturbed surface layers on wrought sheet
  • 4.1. Formation of the disturbed surface layer on wrought sheet
  • 4.2. Consequences on the properties of the sheet
  • 4.3. Structure of the disturbed surface layer
  • 4.4. Activation and susceptibility to corrosion of the disturbed surface layer
  • 4.5. Effect of grinding and machining
  • 4.6. Elimination of the disturbed surface layer
  • Chapter B.5. Influence of alloy composition
  • 5.1. The influence of intermetallics on the corrosion resistance of aluminium alloys
  • 5.2. The influence of the chemical composition on the corrosion resistance
  • 5.3. Influence of iron
  • 5.4. Influence of silicon
  • 5.5. Influence of copper
  • 5.6. Influence of manganese
  • 5.7. Influence of magnesium
  • 5.8. Influence of cadmium
  • 5.9. Influence of chromium
  • 5.10. Influence of lithium
  • 5.11. Influence of mercury
  • 5.12. Influence of lead
  • 5.13. Influence of rare earth elements
  • 5.14. Influence of scandium
  • 5.15. Influence of strontium
  • 5.16. Influence of tantalum
  • 5.17. Influence of tin
  • 5.18. Influence of titanium
  • 5.19. Influence of zinc
  • 5.20. Influence of zirconium
  • Part C
  • Chapter C.1. Uniform corrosion
  • 1.1. Mechanism of uniform corrosion
  • 1.2. Parameters of uniform corrosion
  • 1.3. Measurement of the rate of corrosion
  • 1.4. Mass loss conversions
  • Chapter C.2. Pitting corrosion
  • 2.1. Mechanism of pitting corrosion
  • 2.2. Role of intermetallics
  • 2.3. Rate of development of pitting
  • 2.4. Characterization of pitting corrosion
  • 2.5. Sensitivity of aluminium alloys to pitting corrosion
  • Chapter C.3. Intergranular corrosion
  • 3.1. Role of grain boundaries
  • 3.2. The mechanism of intergranular corrosion
  • 3.3. Anisotropy of intergranular corrosion
  • 3.4. Influence of load constraints
  • 3.5. Influence of heat treatment conditions
  • 3.6. Evaluation of intergranular corrosion
  • Chapter C.4. Exfoliation corrosion
  • 4.1. Mechanism of exfoliation corrosion
  • 4.2. Conditions giving rise to exfoliation corrosion
  • 4.3. Assessment of exfoliation corrosion
  • Chapter C.5. Stress corrosion cracking
  • 5.1. Historical notes
  • 5.2. Definition of stress corrosion cracking
  • 5.3. Mechanism of stress corrosion
  • 5.4. Electrochemical theory of propagation
  • 5.5. Hydrogen embrittlement
  • 5.6. Possible synergy between anodic dissolution and hydrogen embrittlement
  • 5.7. Rate of crack propagation under stress corrosion
  • 5.8. Stress corrosion parameters
  • 5.9. Prevention of stress corrosion
  • 5.10. Measurement of stress corrosion sensitivity
  • 5.11. Stress corrosion sensitivity of aluminium alloys
  • Chapter C.6. Corrosion fatigue
  • 6.1. Corrosion fatigue and stress corrosion cracking
  • 6.2. Mechanism of corrosion fatigue
  • 6.3. Role of corrosion products
  • 6.4. Parameters of corrosion fatigue
  • Chapter C.7. Filiform corrosion
  • 7.1. Historical background
  • 7.2. Characteristics of filiform corrosion
  • 7.3. Mechanism of filiform corrosion
  • 7.4. Parameters of filiform corrosion
  • 7.5. Methods of characterization of filiform corrosion
  • 7.6. Prevention of filiform corrosion
  • Chapter C.8. Crevice corrosion
  • 8.1. Mechanism of crevice corrosion
  • 8.2. Crevice corrosion theories
  • 8.3. Sensitivity of aluminium to crevice corrosion
  • Chapter C.9. Fretting corrosion
  • 9.1. Mechanism of fretting corrosion
  • 9.2. Parameters of fretting corrosion
  • 9.3. Resistance of aluminium alloys to fretting corrosion
  • Chapter C.10. Water line corrosion
  • 10.1. Corrosion by differential aeration
  • 10.2. Water line aluminium corrosion
  • Chapter C.11. Erosion and cavitation
  • 11.1. Erosion
  • 11.2. Cavitation
  • Chapter C.12. Microbiologically influenced corrosion
  • 12.1. The nutritional mode of bacteria
  • 12.2. Role of metabolites in the microbiologically influenced corrosion of aluminium
  • 12.3. Mechanism of aluminium corrosion in the presence of microorganisms
  • 12.4. Formation and role of biofilms (biofouling)
  • 12.5. Resistance of aluminium in the presence of microorganisms
  • Chapter C.13. Galvanic corrosion
  • 13.1. Aluminium and galvanic corrosion
  • 13.2. Definition of galvanic corrosion
  • 13.3. Principles of a battery cell
  • 13.4. Morphology of galvanic corrosion
  • 13.5. Predicting galvanic corrosion
  • 13.6. Conditions of galvanic corrosion
  • 13.7. Galvanic corrosion parameters
  • 13.8. Practical aspects of galvanic corrosion
  • 13.9. The influence of the type of metal in contact with aluminium in emerged assemblies
  • 13.10. Contact between aluminium alloys
  • 13.11. Contact with graphite and carbon fibre-based composites
  • 13.12. Prevention of galvanic corrosion
  • 13.13. Neutralization of galvanic coupling
  • Chapter C.14. Corrosion products
  • 14.1. Elimination of corrosion products
  • 14.2. Analysis of corrosion products
  • Part D
  • Chapter D.1. Parameters governing in-service corrosion resistance
  • 1.1. Factors related to the environment
  • 1.2. Alloy composition
  • 1.3. Forming and transformation routes
  • 1.4. Twin roll casting
  • 1.5. Heat treatments
  • 1.6. Grain size
  • 1.7. Strain hardening
  • 1.8. Surface condition
  • 1.9. Aluminium welding techniques
  • 1.10. Electric arc welding
  • 1.11. Laser beam welding
  • 1.12. Friction stir welding
  • 1.13. Bonding
  • 1.14. Contact with other metals and materials
  • 1.15. Mechanical loads
  • 1.16. Design measures
  • 1.17. Storage and transport
  • 1.18. Maintenance
  • Part E
  • Chapter E.1. Corrosion testing
  • 1.1. Objectives of corrosion testing methods
  • 1.2. Applications of corrosion test methods
  • 1.3. The need for specific corrosion test methods
  • 1.4. Representativeness of corrosion test methods
  • 1.5. Types of tests
  • 1.6. Expression of results
  • 1.7. Electrochemical test methods
  • 1.8. Standardization of corrosion tests
  • Part F
  • Chapter F.1. Protection of aluminium
  • 1.1. Boehmite coatings
  • 1.2. Chemical conversion treatments
  • 1.3. Anodization
  • 1.4. Sealing of anodic layers
  • 1.5. Micro-arc oxidation
  • 1.6. Sol–gel coatings
  • 1.7. Silane coatings
  • 1.8. Polyaniline coatings
  • 1.9. Cladding aluminium alloys
  • 1.10. Plating on aluminium
  • 1.11. Organic coatings
  • 1.12. Corrosion inhibitors
  • 1.13. Cathodic protection of aluminium
  • Part G
  • Chapter G.1. 1XXX Series
  • 1.1. Main 1XXX series grades
  • 1.2. The corrosion resistance of high-purity grades (AA1199)
  • 1.3. Sensitivity to pitting corrosion
  • 1.4. Intergranular corrosion of 1XXX alloy grades
  • Chapter G.2. 2XXX series alloys
  • 2.1. Historical background
  • 2.2. Main 2XXX series alloys
  • 2.3. Corrosion sensitivity of 2XXX series alloys
  • 2.4. Influence of heat treatments
  • 2.5. Clad AA2024 ‘Alclad’
  • Chapter G.3. 3XXX series alloys
  • 3.1. Properties of aluminium–manganese alloys
  • 3.2. Main 3XXX series alloys
  • 3.3. Corrosion resistance of 3XXX series alloys
  • Chapter G.4. 5XXX series alloys
  • 4.1. Properties of the 5XXX series alloys
  • 4.2. Main 5XXX series alloys
  • 4.3. Influence of composition
  • 4.4. Influence of the β-phase Al3Mg2 phase on the corrosion resistance of 5XXX alloys
  • 4.5. Corrosion susceptibility of 5XXX alloys
  • 4.6. Stabilizing heat treatments
  • Chapter G.5. 6XXX series alloys
  • 5.1. Properties of 6XXX series alloys
  • 5.2. Main 6XXX series alloys
  • 5.3. Influence of composition
  • 5.4. Intergranular corrosion susceptibility of 6XXX alloys without copper
  • 5.5. Intergranular corrosion susceptibility of copper-containing 6XXX alloys
  • 5.6. Sensitivity to pitting
  • Chapter G.6. 7XXX series without copper
  • 6.1. Main 7XXX series alloys without copper
  • 6.2. Influence of composition
  • 6.3. Influence of heat treatments
  • 6.4. Corrosion resistance
  • 6.5. Influence of welding on the microstructure of AA7020
  • Chapter G.7. 7XXX series with copper
  • 7.1. Main 7XXX series alloys with copper
  • 7.2. Influence of alloy composition
  • 7.3. Corrosion susceptibility of 7XXX alloys with added copper
  • 7.4. Influence of humidity and water vapour
  • 7.5. Influence of heat treatments
  • Chapter G.8. Aluminium–lithium alloys
  • 8.1. Main aluminium–lithium alloys
  • 8.2. Corrosion resistance of aluminium–lithium alloys
  • 8.3. Pitting corrosion
  • 8.4. Intergranular corrosion
  • 8.5. Exfoliation corrosion
  • 8.6. Stress corrosion cracking
  • Chapter G.9. Aluminium casting alloys
  • 9.1. Main aluminium casting alloys
  • 9.2. Applications of aluminium casting alloys and corrosion resistance
  • 9.3. Corrosion resistance of aluminium casting alloys
  • 9.4. Parameters governing corrosion resistance of aluminium casting alloys
  • 9.5. Stress corrosion cracking resistance
  • 9.6. Filiform corrosion resistance
  • Part H
  • Chapter H.1. Atmospheric corrosion
  • 1.1. Historical background
  • 1.2. Knowledge base of aluminium weathering
  • 1.3. The nature of atmospheric corrosion
  • Chapter H.2. The parameters of atmospheric corrosion
  • 2.1. Relative humidity
  • 2.2. Rain
  • 2.3. Fog
  • 2.4. Condensation
  • 2.5. Temperature
  • 2.6. Gaseous pollutants
  • 2.7. Dust
  • 2.8. Corrosion products
  • 2.9. Alternating periods of dampness and dryness
  • Chapter H.3. Types of atmospheres
  • 3.1. The classic typology
  • 3.2. Standardized typology
  • 3.3. The predictive approach
  • 3.4. Wire-on-bolt test – characterization of the aggressiveness of the atmosphere
  • Chapter H.4. The various forms of atmospheric corrosion
  • 4.1. Pitting corrosion
  • 4.2. Galvanic corrosion
  • 4.3. Filiform corrosion
  • 4.4. Tarnishing due to water staining
  • 4.5. Water staining due to storage of semi-products
  • Chapter H.5. Resistance of aluminium to atmospheric corrosion
  • 5.1. The dome of San Gioacchino Church, a 120-year-old experience
  • 5.2. Atmospheric corrosion of aluminium over time
  • 5.3. Weathering resistance of wrought alloys
  • 5.4. Decrease in the weathering rate of aluminium
  • 5.5. Long-term weathering resistance of wrought alloys
  • 5.6. Long-term weathering of casting alloys
  • 5.7. Weathering resistance of anodized semi-products
  • Part I
  • Chapter I.1. Corrosion in water
  • 1.1. The prediction of corrosion resistance in water is uncertain
  • 1.2. The influence of water quality
  • Chapter I.2. Freshwater
  • 2.1. The physical chemistry of water
  • 2.2. The analysis of water
  • 2.3. The various forms of aluminium corrosion in natural waters
  • 2.4. Blackening of aluminium
  • 2.5. The effect of water on aluminium
  • 2.6. The influence of temperature
  • 2.7. The influence of oxygen dissolved in water
  • 2.8. The influence of pH
  • 2.9. The influence of water movement and flow rate
  • 2.10. Predicting the resistance of aluminium in freshwater
  • 2.11. Examples for the use of aluminium in contact with freshwater
  • 2.12. Purified water
  • Chapter I.3. Seawater
  • 3.1. Historical background
  • 3.2. Characteristics of seawater
  • 3.3. Corrosion resistance of aluminium in the marine environment
  • 3.4. Forms of corrosion in seawater
  • 3.5. Marine applications of aluminium
  • 3.6. Tests in artificial seawater
  • Chapter I.4. Brackish waters and wastewater
  • 4.1. Brackish waters
  • 4.2. Wastewater
  • Part J
  • Chapter J.1. Oxides and peroxides
  • 1.1. Oxygen
  • 1.2. Ozone
  • 1.3. Metal oxides
  • 1.4. Oxides of copper, silver, mercury and lead
  • 1.5. Carbon monoxide and carbon dioxide
  • 1.6. Sulphur dioxide
  • 1.7. Sulphurous acid
  • 1.8. Sulphuric anhydride
  • 1.9. Nitrogen oxides
  • 1.10. Peroxides
  • 1.11. Oxychlorides
  • Chapter J.2. Hydrogen, nitrogen and noble gases
  • 2.1. Hydrogen
  • 2.2. Nitrogen
  • 2.3. Noble gases: argon, helium, krypton, neon and xenon
  • Chapter J.3. Metalloids and halides
  • 3.1. Phosphorus, arsenic and antimony
  • 3.2. Carbon
  • 3.3. Silicon and boron
  • 3.4. Sulphur
  • 3.5. Sulphides
  • 3.6. Fluorine
  • 3.7. Fluorinated derivatives
  • 3.8. Chlorine
  • 3.9. Chlorinated derivatives
  • 3.10. Bromine
  • 3.11. Iodine
  • 3.12. Halogen derivatives
  • Chapter J.4. Inorganic bases
  • 4.1. Sodium hydroxide
  • 4.2. Potassium hydroxide
  • 4.3. Lithium hydroxide
  • 4.4. Calcium hydroxide
  • 4.5. Barium hydroxide
  • 4.6. Ammonia
  • 4.7. Ammonium hydroxide
  • 4.8. Hydrazine
  • 4.9. Urea
  • Chapter J.5. Inorganic acids
  • 5.1. Hydrochloric acid
  • 5.2. Hydrofluoric acid
  • 5.3. Hydrobromic acid and hydroiodic acid
  • 5.4. Hydrocyanic acid
  • 5.5. Perchloric acid
  • 5.6. Chloric acid
  • 5.7. Hypochloric acid
  • 5.8. Sulphuric acid
  • 5.9. Sulphamic acid
  • 5.10. Fluorosulphonic acid and chlorosulphonic acid
  • 5.11. Hyposelenic acid and selenic acid
  • 5.12. Nitric acid
  • 5.13. Phosphoric acid
  • 5.14. Fluorophosphoric acids
  • 5.15. Boric acid
  • 5.16. Chromic acid
  • Chapter J.6. Inorganic salts
  • 6.1. General aspects
  • 6.2. Fluorides
  • 6.3. Chlorides
  • 6.4. Chlorates and perchlorates
  • 6.5. Hypochlorites
  • 6.6. Bromides and iodides
  • 6.7. Sulphates
  • 6.8. Sulphites and hydrogen sulphites
  • 6.9. Sulphides
  • 6.10. Persulphates
  • 6.11. Nitrates
  • 6.12. Nitrites
  • 6.13. Phosphates
  • 6.14. Arsenates and arsenites
  • 6.15. Carbonates
  • 6.16. Silicates and metasilicates
  • 6.17. Borates, perborates and tetraborates
  • 6.18. Cyanides, cyanates and thiocyanates
  • 6.19. Chromates and dichromates
  • 6.20. Permanganates
  • 6.21. Carbamates and sulphamates
  • Part H
  • Chapter K.1. Hydrocarbons
  • 1.1. Alkanes
  • 1.2. Alkenes
  • 1.3. Alkynes
  • 1.4. Arenes or aromatic hydrocarbons
  • 1.5. Terphenyls
  • 1.6. Cyclic, non-benzenic hydrocarbons
  • 1.7. Engine fuels
  • 1.8. Petroleum industry
  • 1.9. Drilling muds
  • Chapter K.2. Halogen derivatives
  • 2.1. Reactivity towards aluminium
  • 2.2. Derivatives of acyclic hydrocarbons
  • 2.3. Derivatives of aromatic hydrocarbons
  • 2.4. Halogen derivatives of acids and phenols
  • Chapter K.3. Alcohols, ethers, thiols and phenols
  • 3.1. The action of boiling alcohols and dehydrated phenols on aluminium
  • 3.2. Methyl alcohol
  • 3.3. Ethyl alcohol
  • 3.4. Higher alcohols
  • 3.5. Acyclic unsaturated alcohols
  • 3.6. Aromatic alcohols
  • 3.7. Other alcohols
  • 3.8. Polyalcohols
  • 3.9. Ethers
  • 3.10. Thiols and their derivatives
  • 3.11. Phenols
  • Chapter K.4. Amines
  • 4.1. Acyclic amines
  • 4.2. Alcohol amines
  • 4.3. Aromatic amines
  • 4.4. Derivatives of aromatic amines
  • 4.5. Aminophenols
  • 4.6. Amino acids
  • Chapter K.5. Aldehydes and ketones
  • 5.1. Aldehydes
  • 5.2. Ketones
  • Chapter K.6. Carboxylic acids and their derivatives
  • 6.1. Acyclic carboxylic acids
  • 6.2. Carboxylic acid anhydrides
  • 6.3. Salts of organic acids
  • 6.4. Esters
  • 6.5. Amides
  • 6.6. Nitriles and nitrous derivatives
  • Chapter K.7. Other organic products
  • 7.1. Alkaloids and heterocyclic compounds
  • 7.2. Glucides
  • Part L
  • Chapter L.1. Corrosion in Soil
  • 1.1. Types of soil
  • 1.2. The influence of the nature of soil on the corrosion behaviour of aluminium
  • 1.3. Form of aluminium corrosion in soils
  • 1.4. Aluminium corrosion resistance in soils
  • 1.5. Protection against corrosion in soil
  • Chapter L.2. Effect of stray currents and alternating currents
  • 2.1. Stray currents
  • 2.2. Alternating currents
  • Chapter L.3. Fertilizers
  • 3.1. Fertilizers
  • 3.2. Plant-care products
  • Chapter L.4. Construction materials
  • 4.1. The effect of concrete
  • 4.2. The action of stray currents
  • 4.3. The effect of plaster
  • 4.4. The effect of wood
  • 4.5. The effect of polymers
  • Chapter L.5. Food industry
  • 5.1. Aluminium and health
  • 5.2. Food compatibility of aluminium: European standardization
  • 5.3. Applications of aluminium in contact with foodstuffs
  • 5.4. The resistance of aluminium in contact with foodstuffs
  • Chapter L.6. Cleaning of aluminium
  • 6.1. Cleaning of metallic surfaces
  • 6.2. The choice of cleaning products
  • 6.3. Compatibility with aluminium
  • 6.4. Cleaning materials used with food
  • 6.5. Cleaning anodized surfaces
  • 6.6. Sand blasting
  • Chapter L.7. Behaviour in fire
  • 7.1. Fire resistance
  • 7.2. Reaction to fire
  • 7.3. The classification of aluminium alloys
  • Part M
  • Chapter M.1. Products that may be dangerous in contact with aluminium
  • Index

Product details

  • No. of pages: 858
  • Language: English
  • Copyright: © Elsevier Science 2020
  • Published: May 6, 2020
  • Imprint: Elsevier Science
  • Hardcover ISBN: 9780080999258
  • eBook ISBN: 9780080999272

About the Author

Christian Vargel

Christian Vargel has over 50 years’ experience in the corrosion and metallurgy of aluminium. He was chief engineer at Pechiney which was the European leader of wrought, extruded and cast aluminium products – where he primarily focused on corrosion of aluminium alloys, from a practical perspective. He surveyed and appraised numerous cases of in-service aluminium corrosion: building, transport, territory equipment, electrical and applications, and renewable energies such as solar, desalination and OTEC.

Affiliations and Expertise

Former Engineer, Pechiney, Consulting Engineer on Corrosion of Aluminium

Ratings and Reviews

Write a review

There are currently no reviews for "Corrosion of Aluminium"