Cooperative and Graph Signal Processing - 1st Edition - ISBN: 9780128136775, 9780128136782

Cooperative and Graph Signal Processing

1st Edition

Principles and Applications

Editors: Petar Djuric Cédric Richard
eBook ISBN: 9780128136782
Paperback ISBN: 9780128136775
Imprint: Academic Press
Published Date: 20th June 2018
Page Count: 866
Sales tax will be calculated at check-out Price includes VAT/GST
175.41
149.10
89.95
76.46
125.00
106.25
76.00
64.60
Unavailable
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience.

With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings.

Key Features

  • Presents the first book on cooperative signal processing and graph signal processing
  • Provides a range of applications and application areas that are thoroughly covered
  • Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book

Readership

Researchers and graduate students in signal and information processing over networks

Table of Contents

PART 1 BASICS OF INFERENCE OVER NETWORKS

CHAPTER 1 Asynchronous Adaptive Networks

CHAPTER 2 Estimation and Detection Over Adaptive Networks

CHAPTER 3 Multitask Learning Over Adaptive Networks With Grouping Strategies

CHAPTER 4 Bayesian Approach to Collaborative Inference in Networks of Agents

CHAPTER 5 Multiagent Distributed Optimization

CHAPTER 6 Distributed Kalman and Particle Filtering

CHAPTER 7 Game Theoretic Learning

PART 2 SIGNAL PROCESSING ON GRAPHS

CHAPTER 8 Graph Signal Processing

CHAPTER 9 Sampling and Recovery of Graph Signals

CHAPTER 10 Bayesian Active Learning on Graphs

CHAPTER 11 Design of Graph Filters and Filterbanks

CHAPTER 12 Statistical Graph Signal Processing: Stationarity and Spectral Estimation

CHAPTER 13 Inference of Graph Topology

CHAPTER 14 Partially Absorbing Random Walks: A Unified Framework for Learning on Graphs

PART 3 DISTRIBUTED COMMUNICATIONS, NETWORKING, AND SENSING

CHAPTER 15 Methods for Decentralized Signal Processing With Big Data

CHAPTER 16 The Edge Cloud: A Holistic View of Communication, Computation, and Caching

CHAPTER 17 Applications of Graph Connectivity to Network Security

CHAPTER 18 Team Methods for Device Cooperation in Wireless Networks

CHAPTER 19 Cooperative Data Exchange in Broadcast Networks

CHAPTER 20 Collaborative Spectrum Sensing in the Presence of Byzantine Attack

PART 4 SOCIAL NETWORKS

CHAPTER 21 Dynamics of Information Diffusion and Social Sensing

CHAPTER 22 Active Sensing of Social Networks: Network Identification From Low-Rank Data

CHAPTER 23 Dynamic Social Networks: Search and Data Routing

CHAPTER 24 Information Diffusion and Rumor Spreading

CHAPTER 25 Multilayer Social Networks

CHAPTER 26 Multiagent Systems: Learning, Strategic Behavior, Cooperation, and Network Formation

PART 5 APPLICATIONS

CHAPTER 27 Genomics and Systems Biology

CHAPTER 28 Diffusion Augmented Complex Extended Kalman Filtering for Adaptive Frequency Estimation in Distributed Power Networks

CHAPTER 29 Beacons and the City: Smart Internet of Things

CHAPTER 30 Big Data

CHAPTER 31 Graph Signal Processing on Neuronal Networks

Index

Details

No. of pages:
866
Language:
English
Copyright:
© Academic Press 2018
Published:
Imprint:
Academic Press
eBook ISBN:
9780128136782
Paperback ISBN:
9780128136775

About the Editor

Petar Djuric

Petar M. Djurić received the B.S. and M.S. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, respectively, and the Ph.D. degree in electrical engineering from the University of Rhode Island, Kingston, RI, USA. He is currently a Professor with the Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA. His research has been in the area of signal and information processing with primary interests in the theory of signal modeling, detection, and estimation; Monte Carlo-based methods; signal and information processing over networks; machine learning, RFID and the IoT. He has been invited to lecture at many universities in the United States and overseas. Prof. Djurić was a recipient of the IEEE Signal Processing Magazine Best Paper Award in 2007 and the EURASIP Technical Achievement Award in 2012. In 2008, he was the Chair of Excellence of Universidad Carlos III de Madrid-Banco de Santander. From 2008 to 2009, he was a Distinguished Lecturer of the IEEE Signal Processing Society. He has been on numerous committees of the IEEE Signal Processing Society and of many professional conferences and workshops. He is the Editor-in-Chief of the IEEE Transactions on Signal and Information Processing over Networks. Prof. Djurić is a Fellow of IEEE and EURASIP.

Affiliations and Expertise

Stony Brook University, Stony Brook, NY, USA

Cédric Richard

Cédric Richard received the Dipl.-Ing. and the M.S. degrees in 1994, and the Ph.D. degree in 1998, from Compiègne University of Technology, France, all in Electrical and Computer Engineering. He is a Full Professor at the Université Nice Sophia Antipolis, France. He was a junior member of the Institut Universitaire de France in 2010-2015. His current research interests include adaptation and learning, statistical signal processing, and network science. Cédric Richard is the author of over 250 papers. He was the General Co-Chair of the IEEE SSP Workshop that was held in Nice, France, in 2011. He was the Technical Co-Chair of EUSIPCO 2015 that was held in Nice, France, and of the IEEE CAMSAP Workshop 2015 that was held in Cancun, Mexico. He serves as a Senior Area Editor of the IEEE Transactions on Signal Processing and as an Associate Editor of the IEEE Transactions on Signal and Information Processing over Networks since 2015. He is also an Associate Editor of Signal Processing Elsevier since 2009. Cédric Richard is a member of the IEEE Machine Learning for Signal Processing (IEEE MLSP TC) Technical Committee, and served as member of the IEEE Signal Processing Theory and Methods (IEEE SPTM TC) Technical Committee in 2009-2014.

Affiliations and Expertise

Université Nice Sophia Antipolis, Nice, France

Ratings and Reviews