Control of Complex Systems - 1st Edition - ISBN: 9780128052464, 9780128054376

Control of Complex Systems

1st Edition

Theory and Applications

Editors: Kyriakos Vamvoudakis Sarangapani Jagannathan
eBook ISBN: 9780128054376
Hardcover ISBN: 9780128052464
Imprint: Butterworth-Heinemann
Published Date: 23rd July 2016
Page Count: 762
Sales tax will be calculated at check-out Price includes VAT/GST
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
215.41
161.56
161.56
161.56
161.56
161.56
172.33
172.33
143.00
107.25
107.25
107.25
107.25
107.25
114.40
114.40
125.00
93.75
93.75
93.75
93.75
93.75
100.00
100.00
200.00
150.00
150.00
150.00
150.00
150.00
160.00
160.00
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5 sections: “Introduction and Background on Control Theory”, “Adaptive Control and Neuroscience”, “Adaptive Learning Algorithms”, “Cyber-Physical Systems and Cooperative Control”, “Applications”.
The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists.

This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems.

• Collection of chapters from several well-known professors and researchers that will showcase their recent work

• Presents different state-of-the-art control approaches and theory for complex systems

• Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams

• Real system examples and figures throughout, make ideas concrete

Key Features

  • Includes chapters from several well-known professors and researchers that showcases their recent work
  • Presents different state-of-the-art control approaches and theory for complex systems
  • Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams
  • Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems

Readership

Mechanical, electrical, and aerospace engineers in feedback control systems design. Industrial engineering process control. Engineering companies, government agencies, and research institutes

Table of Contents

1. Introduction and Background on Control Theory
  
2. Hierarchical Adaptive Control of Rapidly Time-Varying Systems 
 
3. Adaptive stabilization of uncertain systems with model-based control and event-triggered feedback updates
  
4. A Neural Field Theory for Loss of Consciousness: Synaptic Drive Dynamics, System Stability, Attractors, Partial Synchronization, and Hopf Bifurcations Characterizing the Anesthetic Cascade

5. Optimal Tracking Control of Uncertain Systems: On-policy and Off-policy Reinforcement Learning Approaches

6. Addressing adaptation and learning in the context of MPC and MHE

7. Stochastic Adaptive Dynamic Programming for Robust Optimal Control Design
  
8. Model-based reinforcement learning for approximate optimal regulation

9. Continuous-Time Distributed Adaptive Dynamic Programming for Heterogeneous Multi-Agent Optimal Synchronization Control
 
10. Model-Free Learning of Games with Applications to Network Security

11. Adaptive Optimal Regulation of a Class of Uncertain Nonlinear Systems using Event Sampled Neural Network Approximators
  
12. Decentralized Cooperative Control in Degraded Communication Environments
 
13. Multi-Agent Layered Formation Control Based on Rigid Graph Theory
  
14. Certainty Equivalence, Separation Principle, and Cooperative Output Regulation of Multi-Agent Systems by Distributed Observer Approach

 
15. Cooperative Learning for Robust Connectivity in Multi-robot Heterogeneous Networks
  
16. Flocking of Discrete-time Wheeled Vehicles with a Large Communication Delay Through a Potential Functional Approach

17. Cooperative Control and Networked Operation of Passivity-Short Systems
  
18. Synchronizing Region Approach for Identical Linear Time-invariant Agents
Applications

19. The Stereographic Product of Positive-Real Functions is Positive-Real
 
20. Control of Aggregate Electric Water Heating Loads via Mean Field Games Based Methods
  
21. Trajectory Planning Based on Collocation Methods for Adaptive Motion Control of Multiple Aerial and Ground Autonomous Vehicles
  
22. Intelligent control of a prosthetic ankle using gait recognition
  
23. Novel robust adaptive algorithms for estimation and control - Theory and Practical Examples
  
24. Conclusions

 

Details

No. of pages:
762
Language:
English
Copyright:
© Butterworth-Heinemann 2016
Published:
Imprint:
Butterworth-Heinemann
eBook ISBN:
9780128054376
Hardcover ISBN:
9780128052464

About the Editor

Kyriakos Vamvoudakis

Kyriakos G. Vamvoudakis was born in Athens, Greece. He received the Diploma (a 5 year degree, equivalent to a Master of Science) in Electronic and Computer Engineering from Technical University of Crete, Greece in 2006 with highest honors. After moving to the United States of America, he studied at The University of Texas with Frank L. Lewis as his advisor and he received his M.S. and Ph.D. in Electrical Engineering in 2008 and 2011 respectively. From May 2011 to January 2012, he was working as an Adjunct Professor and Faculty Research Associate at the University of Texas at Arlington and at the Automation and Robotics Research Institute. During the period 2012-2016 he was a Project Research Scientist at the Center for Control, Dynamical systems and Computation (CCDC) at the University of California, Santa Barbara. He is now an assistant professor at the department of Aerospace and Ocean Engineering at Virginia Tech. His research interests include approximate dynamic programming, game theory, nonlinear control, and optimal control. Recently, his research has focused on network security, smart grid and multi-agent optimization. Dr. Vamvoudakis is the recipient of several international awards including the 2016 International Neural Network Society Young Investigator (INNS) Award, the Best Paper Award for Autonomous/Unmanned Vehicles at the 27th Army Science Conference in 2010, the Best Presentation Award at the World Congress of Computational Intelligence in 2010, and the Best Researcher Award from the Automation and Robotics Research Institute in 2011. He is a member of Tau Beta Pi, Eta Kappa Nu and Golden Key honor societies and is listed in Who’s Who in the World, Who’s Who in Science and Engineering, and Who’s Who in America. He has also served on various international program committees and has organized special sessions for several international conferences. He currently is a member of the Technical Committee on Intelligent Control of the IEEE Control Systems Society (TCIC), a member of the Technical Committee on Adaptive Dynamic Programming and Reinforcement Learning of the IEEE Computational Intelligence Society (ADPRLTC), an Associate Editor of the Journal of Optimization Theory and Applications, an Associate Editor on the IEEE Control Systems Society Conference Editorial Board, an Editor in Chief of the Communications in Control Science and Engineering, a registered Electrical/Computer engineer (PE) and a member of the Technical Chamber of Greece. He is a Senior Member of IEEE.

Affiliations and Expertise

Assistant Professor, Virginia Tech, Blacksburg, VA, USA

Sarangapani Jagannathan

Dr. Jagannathan Sarangapani (referred here as S. Jagannathan) is at the Missouri University of Science and Technology (former University of Missouri-Rolla) where he is a Rutledge-Emerson Endowed Chair Professor of Electrical and Computer Engineering and Site Director for the NSF Industry/University Cooperative Research Center on Intelligent Maintenance Systems. His research interests include neural network control, adaptive event-triggered control, secure networked control systems, prognostics, and autonomous systems/robotics.

Affiliations and Expertise

Chair, professor of electrical and computer engineering, and site director for the NSF Industry/University Cooperative Research Center on Intelligent Maintenance Systems, Missouri University of Science and Technology

Ratings and Reviews