Computer Design of Diffractive Optics

Computer Design of Diffractive Optics

1st Edition - November 19, 2012

Write a review

  • Author: V A Soifer
  • Hardcover ISBN: 9781845696351
  • eBook ISBN: 9780857093745

Purchase options

Purchase options
DRM-free (EPub, PDF, Mobi)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order


Diffractive optics involves the manipulation of light using diffractive optical elements (DOEs). DOEs are being widely applied in such areas as telecommunications, electronics, laser technologies and biomedical engineering. Computer design of diffractive optics provides an authoritative guide to the principles and applications of computer-designed diffractive optics.The theoretical aspects underpinning diffractive optics are initially explored, including the main equations in diffraction theory and diffractive optical transformations. Application of electromagnetic field theory for calculating diffractive gratings and related methods in micro-optics are discussed, as is analysis of transverse modes of laser radiation and the formation of self-replicating multimode laser beams. Key applications of DOEs reviewed include geometrical optics approximation, scalar approximation and optical manipulation of micro objects, with additional consideration of multi-order DOEs and synthesis of DOEs on polycrystalline diamond films.With its distinguished editor and respected team of expert contributors, Computer design of diffractive optics is a comprehensive reference tool for professionals and academics working in the field of optical engineering and photonics.

Key Features

  • Explores the theoretical aspects underpinning diffractive optics
  • Discusses key applications of diffractive optical elements
  • A comprehensive reference for professionals and academics in optical engineering and photonics


Professionals and academics working in the field of optical engineering and photonics.

Table of Contents

  • Preface

    Chapter 1: Main equations of diffraction theory

    1.1 Maxwell equations

    1.2 Differential equations in optics

    1.3 Integral optics theorems

    1.4 Integral transforms in optics

    1.5 Methods for solving the direct diffraction problem


    Chapter 2: Diffractive optical transformations

    2.1 Transformations in optical systems

    2.2 Diffraction gratings

    2.3 Flat lenses and prisms

    2.4 Inverse problem of diffractive optics

    2.5 The method of coding the phase function of DOE

    2.6 Discretisation and quantisation of the DOE phase

    2.7 Computer design and formation of the diffractive microrelief

    Chapter 3: Calculation of diffractive optical elements in geometrical optics approximation

    3.1 Calculation of DOE for focusing into a curve in geometrical optics approximation

    3.2 Curvilinear coordinates in the problem of focusing on a curve

    3.3 Calculation and investigation of geometrical optics focusators

    3.4 Focusator into a two-dimensional region. The method of matched rectangles

    3.5 Correction of wave fronts


    Chapter 4: Calculation of the DOE in the scalar approximation of the diffraction theory

    4.1 Iterative methods of calculating the DOE

    4.2 Calculation of the DOEs producing the radial-symmetric intensity distribution

    4.3 Calculation of one-dimensional diffractive gratings

    4.4 The equalisation of the intensity of the Gaussian beam

    4.5 DOE forming contour images

    4.6 Calculation of quantised DOEs


    Chapter 5: Multi-order diffractive optical elements

    5.1 Multi-order focusators

    5.2 Diffractive multi-focus lenses

    5.3 Two-order DOEs

    5.4 Spectral DOEs


    Chapter 6: Application of the theory of the electromagnetic field for calculating diffractive gratings

    6.1 Diffraction on ideally conducting gratings with a stepped profile

    6.2 Diffraction on the ideally reflecting gratings with a continuous profile (Rayleigh approximation)

    6.3 Diffraction on dielectric gratings

    6.4 Gradient methods of calculating the profile of the diffractive gratings

    6.5 Diffraction on two-dimensional dielectric gratings


    Chapter 7: Methods of the theory of the electromagnetic field in micro-optics

    7.1 Analysis of the DOE by the method of finite-difference time-domain solution of Maxwell equations

    7.1.3 Diffraction of the TE mode on the two-dimensional gratings with ideal conductivity

    7.2 The finite element method in micro-optics

    Chapter 8: Analysis of transverse modes of laser radiation

    8.1 Propagation of electromagnetic radiation in optical waveguides

    8.2 Modans – diffractive optical elements (DOE) matched to laser radiation modes

    8.3 Calculation of the DOE matched with the characteristics of the gradient medium

    8.4 DOEs for analysis of the transverse modes of light fields

    8.5 Selection of modes in free space

    8.6 Transmission of information with mode-division multiplexing

    8.7 Fibre optic sensors based on mode selection

    Chapter 9: Formation of self-reproducing multimode laser beams

    9.1 Multimode light fields with different properties of self-reproduction

    9.2 Composition method for the synthesis of DOE forming a multimode beam

    9.3 Formation of self-reproducing multi-mode laser beams

    9.4 Formation of several self-reproducing beams in different diffraction orders


    Chapter 10: Optical manipulation of micro–objects by DOE

    10.1 The strength of interaction of the light field with micro–objects

    10.2 Light beams to capture micro–objects

    10.3 The scope of optical manipulation

    10.4 Motion control of micro–objects using light fields formed by DOE


    Chapter 11: Synthesis of DOE on polycrystalline diamond films

    11.1 Formation technology of the microrelief on the surface of diamond films

    11.2 Synthesis and study of thin lenses on diamond films

    11.3 DOEs focusing CO2-laser radiation in two-dimensional field

    11.4 Analysis of antireflective subwavelength structures formed on the diamond film

    11.5 Simulation of a cylindrical diamond DOE with subwavelength technological errors in the microrelief

    11.6 The influence of local technological errors on efficiency of the DOE

    11.7 Stochastic optimization of the diamond focuser microrelief taking into account the systematic errors of manufacture

    11.8 Experimental study of the focuser into a circle


Product details

  • No. of pages: 896
  • Language: English
  • Copyright: © Woodhead Publishing 2012
  • Published: November 19, 2012
  • Imprint: Woodhead Publishing
  • Hardcover ISBN: 9781845696351
  • eBook ISBN: 9780857093745

About the Author

V A Soifer

Dr Victor A. Soifer is the Director of the Russian Academy of Science’s Institute of Image Processing Systems.

Affiliations and Expertise

Russian Academy of Sciences, Russia

Ratings and Reviews

Write a review

There are currently no reviews for "Computer Design of Diffractive Optics"