COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Computational Modelling of Nanoparticles - 1st Edition - ISBN: 9780081022320, 9780081022757

Computational Modelling of Nanoparticles, Volume 12

1st Edition

0.0 star rating Write a review
Editors: Stefan Bromley Scott Woodley
Hardcover ISBN: 9780081022320
eBook ISBN: 9780081022757
Imprint: Elsevier
Published Date: 1st September 2018
Page Count: 351
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Introduction to Modeling Nanoclusters and Nanoparticles
1. How to Design Models for Ceria Nanoparticles: Challenges and Strategies for Describing Nanostructured Reducible Oxide
2. Simulating Heterogeneous Catalysis on Metallic Nanoparticles: From Under-Coordinated Sites to Extended Facets
3. From Nanoparticles to Mesoporous Materials
4. The DFT-Genetic Algorithm Approach for Global Optimization of Subnanometer Bimetallic Clusters
5. Clusters and Nanoparticles: The Experimental–Computational Connection to Understanding
6. Stress-Driven Structural Transitions in Bimetallic Nanoparticles
7. Modeling Realistic Titania Nanoparticle
8. DFT Modeling of Metallic Nanoparticles
9. Melting and Structural Transitions


Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties.

This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research.

Key Features

  • Explores how computational modelling can be successfully applied at the nanoscale level
  • Includes techniques for the computation modelling of different types of nanoclusters, including nanoalloy clusters, fullerines and Ligated and/or solvated nanoclusters
  • Offers complete coverage of the use of computational modelling at the nanoscale, from characterization and processing, to applications


Researchers in both academia and working in R&D looking to learn more about what computational modelilng techniques can tell us about the properties of different nanomaterials


No. of pages:
© Elsevier 2019
1st September 2018
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Editors

Stefan Bromley

Stefan T. Bromley is ICREA Research Professor at the Institute of Theoretical and Computational Chemistry at the University of Barcelona (IQTUB) where he heads the Nanoclusters and Nanostructured Materials group. His research focuses on the computational modelling of nanostructured materials, in particular on how nanomaterials evolve with increasing size, and the design of new nanomaterials using nanoscale building blocks

Affiliations and Expertise

ICREA Research Professor, Institute of Theoretical and Computational Chemistry, University of Barcelona (IQTUB)

Scott Woodley

Scott M. Woodley is a Reader of Computational Chemistry and Physics at University College London, UK. His research focuses on the development and implementation of software for modelling the atomic and electronic structure of materials, along with their properties.

Affiliations and Expertise

Reader of Computational Chemistry and Physics, University College London, UK