Transport processes are often characterized by the simultaneous presence of multiple dependent variables, multiple length scales, body forces, free boundaries and strong non-linearities. The various computational elements important for the prediction of complex fluid flows and interfacial transport are presented in this volume. Practical applications, presented in the form of illustrations and examples are emphasized, as well as physical interpretation of the computed results. The book is intended as a reference for researchers and graduate students in mechanical, aerospace, chemical and materials engineering.

Both macroscopic and microscopic (but still continuum) features are addressed. In order to lay down a good foundation to facilitate discussion of more advanced techniques, the book has been divided into three parts. Part I presents the basic concepts of finite difference schemes for solving parabolic, elliptic and hyperbolic partial differential equations. Part II deals with issues related to computational modeling for fluid flow and transport phenomena. Existing algorithms to solve the Navier-Stokes equations can be generally classified as density-based methods and pressure-based methods. In this book the pressure-based method is emphasized. Recent efforts to improve the performance of the pressure-based algorithm, both qualitatively and quantitatively, are treated, including formulation of the algorithm and its generalization to all flow speeds, choice of coordinate system and primary velocity variables, issues of grid layout, open boundary treatment and the role of global mass conservation, convection treatment and convergence. Practical engineering applications, including gas-turbine combustor flow, heat transfer and convection in high pressure discharge lamps, thermal management under microgravity, and flow through hydraulic turbines are also discussed.

Part III addresses the transport processes involving interfacial dynamics. Specifically those influ

Table of Contents

Part I. Basic Concepts of Finite Difference Methods. I. Introduction to finite difference methods. II. Parabolic equations. III. Elliptic equations. IV. Hyperbolic equations. Part II. Pressure-Based Algorithms and their Applications. V. Pressure-based algorithms. VI. Practical applications. Part III. Interfacial Transport. VII. Basic concepts of thermodynamics. VIII. Thermofluid phenomena involving capillarity and gravity. IX. Physical and computational issues in phase-change dynamics. References. Index.


© 1994
Elsevier Science
Electronic ISBN:
Print ISBN:

About the author

Reviews highly suitable for research students in applied mathematics and mechanical and chemical engineering who will either be implementing finite differencing schemes or studying interfacial transport. The experienced researcher will also benefit from the lucid reviews in these fields. @source:The Chemical Engineering Journal an overview of the state-of-the-art which is very instructive and illuminating. Numerous results are presented in clear, graphical form. The reference list is very extensive - over 300 entries. It is a very high quality book, certainly a must for engineering libraries. @source:Drying Technology