COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Computational Modeling for Fluid Flow and Interfacial Transport - 1st Edition - ISBN: 9780444817600, 9781483290416

Computational Modeling for Fluid Flow and Interfacial Transport, Volume 5

1st Edition

0.0 star rating Write a review
Author: W. Shyy
eBook ISBN: 9781483290416
Imprint: Elsevier Science
Published Date: 3rd November 1993
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Part I. Basic Concepts of Finite Difference Methods. I. Introduction to finite difference methods. II. Parabolic equations. III. Elliptic equations. IV. Hyperbolic equations. Part II. Pressure-Based Algorithms and their Applications. V. Pressure-based algorithms. VI. Practical applications. Part III. Interfacial Transport. VII. Basic concepts of thermodynamics. VIII. Thermofluid phenomena involving capillarity and gravity. IX. Physical and computational issues in phase-change dynamics. References. Index.


Transport processes are often characterized by the simultaneous presence of multiple dependent variables, multiple length scales, body forces, free boundaries and strong non-linearities. The various computational elements important for the prediction of complex fluid flows and interfacial transport are presented in this volume. Practical applications, presented in the form of illustrations and examples are emphasized, as well as physical interpretation of the computed results. The book is intended as a reference for researchers and graduate students in mechanical, aerospace, chemical and materials engineering.

Both macroscopic and microscopic (but still continuum) features are addressed. In order to lay down a good foundation to facilitate discussion of more advanced techniques, the book has been divided into three parts. Part I presents the basic concepts of finite difference schemes for solving parabolic, elliptic and hyperbolic partial differential equations. Part II deals with issues related to computational modeling for fluid flow and transport phenomena. Existing algorithms to solve the Navier-Stokes equations can be generally classified as density-based methods and pressure-based methods. In this book the pressure-based method is emphasized. Recent efforts to improve the performance of the pressure-based algorithm, both qualitatively and quantitatively, are treated, including formulation of the algorithm and its generalization to all flow speeds, choice of coordinate system and primary velocity variables, issues of grid layout, open boundary treatment and the role of global mass conservation, convection treatment and convergence. Practical engineering applications, including gas-turbine combustor flow, heat transfer and convection in high pressure discharge lamps, thermal management under microgravity, and flow through hydraulic turbines are also discussed.

Part III addresses the transport processes involving interfacial dynamics. Specifically those influenced by phase change, gravity, and capillarity are emphasized, and both the macroscopic and morphological (microscopic) scales are presented. Basic concepts of interface, capillarity, and phase change processes are summarized to help clarify physical mechanisms, followed by a discussion of recent developments in computational modeling. Numerical solutions are also discussed to illustrate the salient features of practical engineering applications. Fundamental features of interfacial dynamics have also been illustrated in the form of case studies, to demonstrate the interplay between fluid and thermal transport of macroscopic scales and their interaction with interfacial transport.


© Elsevier Science 1994
3rd November 1993
Elsevier Science
eBook ISBN:

Reviews highly suitable for research students in applied mathematics and mechanical and chemical engineering who will either be implementing finite differencing schemes or studying interfacial transport. The experienced researcher will also benefit from the lucid reviews in these fields. @source:The Chemical Engineering Journal an overview of the state-of-the-art which is very instructive and illuminating. Numerous results are presented in clear, graphical form. The reference list is very extensive - over 300 entries. It is a very high quality book, certainly a must for engineering libraries. @source:Drying Technology

Ratings and Reviews

About the Author

W. Shyy

Affiliations and Expertise

University of Florida, Department of Aerospace Engineering, Mechanics and Engineering Science, Gainesville, FL, USA