This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field.

Key Features

@introbul:Key Features @bul:* Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications


Chemical engineers, mechanical engineers, fuel chemists, applied chemists, aeronautical engineers, and atmospheric scientists

Table of Contents

Chemical Thermodynamics and Flame Temperatures: Introduction. Heats of Reaction and Formation. Free Energy and the Equilibrium Constants. Flame Temperature Calculations. Analysis. Practical Considerations. Problems. References. Chemical Kinetics: Introduction. The Rates of Reactions and Their Temperature Dependency. The Arrhenius Rate Expression. Transition State and Recombination Rate Theories. Simultaneous Interdependent Reactions. Chain Reactions. Pseudo-First-Order Reactions and the"Fall-Off"Range. The Partial Equilibrium Assumption. Pressure Effect in Fractional Conversion. Problems. References. Explosive and General Oxidative Characteristics of Fuels: Introduction. Chain Branching Reactions and Criteria for Explosion. Explosion Limits and Oxidation Characteristics of Hydrogen. Explosion Limits and Oxidation Characteristics of Carbon Monoxide. Explosion Limits and Oxidation Characteristics of Hydrocarbons. Organic Nomenclature. Explosion Limits."Low-Temperature"Hydrocarbon Oxidation Mechanisms. The Oxidation of Aldehydes. The Oxidation of Methane. Low Temperature Mechanism. High Temperature Mechanism. The Oxidation of Higher Order Hydrocarbons. Aliphatic Hydrocarbons. Alcohols. Aromatic Hydrocarbons.Problems. References. Flame Phenomena in Premixed Combustible Gases: Introduction. Laminar Flame Structure. The Laminar Flame Speed. The Theory of Mallard And Le Chatelier. Comprehensive Theory And Laminar Flame Structure Analysis. The Laminar Flameand The Energy Equation. Flame Speed Measurements. Experimental Results--Physical and Chemical Effects. Stability Limits of Laminar Flames. Flammability Limits. Quenching Distance. Flame Stabilization (Low Velocity). Stability Limits and Design. Turbulent Reacting Flows and Turbulent Flames. The Rate of Reaction in a Turbulent Field. Regimes of Turbulent Reacting Flows. The Turbulent Flame Speed. Stirred Reactor Theory. Flame Stabilization in High-Velocit


No. of pages:
© 1996
Academic Press
Print ISBN:
eBook ISBN:

About the author

Irvin Glassman

Dr. Irvin Glassman received both his undergraduate and graduate degrees in Chemical Engineering from The Johns Hopkins University. In 1950 he joined Princeton University, and is currently Robert H. Goddard Professor of Mechanical and Aerospace Engineering. He has also been American Cyanamid Professor of Envirionmental Sciences and Director of Princeton's Center for Energy and Evironmental Studies. For 15years Dr. Glassman represented the United States as a member (and former chairman) of the Propulsion and Energetics Panel of AGARD/NATO. He has been a member of numerous committees, task forces, and research teams, and is currently a member of The National Academy of Engineering and many other professional and honorary societies. Dr. Glassman is listed in Who's Who in America, Who's Who in the World, Outstanding Educators of America, and American Men of Science.

Affiliations and Expertise

Princeton University, NJ, USA


@qu:"This book has now become one of the most important textbooks and teaching aids to combustion. It will remain as a record of the great debt that combustion science and technology owes to the teachings of Professor Glassman." @source:--INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER