Classical and Modern Direction of Arrival Estimation contains both theory and practice of direction finding by the leading researchers in the field. This unique blend of techniques used in commercial DF systems and state-of-the art super-resolution methods is a valuable source of information for both practicing engineers and researchers. Key topics covered are:

  • Classical methods of direction finding
  • Practical DF methods used in commercial systems
  • Calibration in antenna arrays
  • Array mapping, fast algorithms and wideband processing
  • Spatial time-frequency distributions for DOA estimation
  • DOA estimation in threshold region
  • Higher order statistics for DOA estimation
  • Localization in sensor networks and direct position estimation

Key Features

  • Brings together in one book classical and modern DOA techniques, showing the connections between them
  • Contains contributions from the leading people in the field
  • Gives a concise and easy- to- read introduction to the classical techniques
  • Evaluates the strengths and weaknesses of key super-resolution techniques
  • Includes applications to sensor networks


Signal processing researchers, R&D engineers, systems designers and implementers and graduate students.

Table of Contents

1. Wireless Direction-Finding Fundamentals
Benjamin Friedlander

1.1. Introduction
1.2. Problem Formulation
1.3. Direction-Finding Algorithms
1.4. Direction-Finding Accuracy
1.5. Multipath and Co-Channel Interference
1.6. Direction Finding for Multiple Co-Channel Emitters
1.7. Discussion

2. Practical Aspects of Design and Application of Direction-Finding Systems
Franz Demmel

2.1. Introduction
2.2. Application of Direction-Finding Systems
2.3. Typical System Design—Overview
2.4. Performance Parameters
2.5. Antenna Array Design
2.6. Number of Antenna Elements and Processing Channels
2.7. Multichannel Receivers
2.8. Wideband Direction Finding
2.9. Implementation Aspects of High-Resolution Direction Finding
2.10. Error Sources
2.11. Test and Measurement Procedures

3. Calibration in Array Processing
Mats Viberg, Maria Lanne, Astrid Lundgren

3.1. Introduction
3.2. Data and Error Models
3.3. Direction-of-Arrival Estimation
3.4. Auto-Calibration Techniques
3.5. Calibration Using Sources at Known Positions
3.6. Array Interpolation Techniques
3.7. Comparison of Approaches
3.8. Conclusion

4. Narrowband and Wideband DOA Estimation for Uniform and Nonuniform Linear Arrays
T. Engin Tuncer, T. Kaya Yasar, Benjamin Friedlander

4.1. Introduction
4.2. Array Models
4.3. Narrowband Direction-of-Arrival Estimation
4.4. Wideband Direction-of-Arrival Estimation
4.5. Conclusion

5. Search-Free DOA Estimation Algorithms for Nonuniform Sensor Arrays
Michael Rübsamen, Alex B. Gershman

5.1. Introduction
5.2. Background
5.3. Search-Free Methods for Specific Array Structures
5.4. Search-Free Methods for Arbitrary Arrays
5.5. Simulation Results
5.6. Conclusion

6. Spatial T


No. of pages:
© 2009
Academic Press
Print ISBN:
Electronic ISBN: