cDNA Preparation and Characterization, Volume 303

1st Edition

Serial Volume Editors: Sherman Weissman
Editor-in-Chiefs: John Abelson Melvin Simon
Hardcover ISBN: 9780121822040
eBook ISBN: 9780080884141
Imprint: Academic Press
Published Date: 17th May 1999
Page Count: 575


This product is currently not available for sale.

Table of Contents

cDNA Preparation:

J. Estee, P. Crino, and J. Eberwine, Preparation of cDNA from Single Cells and Subcellular Regions.

P. Carninci and Y. Hayashizaki, High-Efficiency Full-length cDNA Cloning.

M. Liu, Y.V.B.K. Subramanyam, and N. Baskaran, Preparation and Analysis of cDNA from a Small Number of Hematopoietic Cells.

C. Aston, C. Hiort and D.C. Schwartz, Optical Mapping: An Approach for Fine Mapping.

Gene Identification:

R.J. Mural, Current Status of Computational Gene Finding: A Perspective.

D.M. Church and A.J. Buckler, Gene Identification by Exon Amplification.

J.T. den Dunnen, Cosmid-Based Exon Trapping.

A.D. Simmons and M. Lovett, Direct cDNA Selection Using Large Genomic DNA Targets.

S. Parimoo and S.M. Weissman, cDNA Selection: An Approach for Isolation of Chromosome Specific cDNAs.

K. Gardiner, Saturation Identification of Coding Sequences in Genomic DNA.

Patterns of mRNA Expression:

R. Drmanac and S. Drmanac, cDNA Screening by Array Hybridization.

M.B. Eisen and P.O. Brown, DNA Arrays for Analysis of Gene Expression.

M.D. Clark, G.D. Panopoulou, D.J. Cahill, K. Büssow, and H. Lehrach, Construction and Analysis of Arrayed cDNA Libraries.

K.J. Martin and A.B. Pardee, Principles of Differential Display.

Y. Prashar and S.M. Weissman, A Method for Display of 3'-End Fragments of Restriction Enzyme Digested cDNAs for Analysis of Differential Gene Expression.

Y.V.B.K. Subrahmkanyam, N. Baskaran, P.E. Newburger, and S.M. Weissman, A Modified Method for the Display of 3'-End Restriction Fragments of cDNAs: Molecular Profiling of Gene Expression


Genomic sequences, now emerging at a rapid rate, are greatly expediting certain aspects of molecular biology. However, in more complex organisms, predicting mRNA structure from genomic sequences can often be difficult. Alternative splicing, the use of alternative promoters, and orphan genes without known analogues can call present difficulties in the predictions of the structure of mRNAs or even in gene detection. Both computational and experimental methods remain useful for recognizing genes and transcript templates, even in sequenced DNA. Methods for producing full-length cDNAs are important for determining the structures of the proteins the mRNA encodes, the positions of promoters, and the considerable regulatory information for translation that may be encoded in the 5' untranslated regions of the mRNA. Methods for studying levels of mRNA and their changes in different physiological circumstances are rapidly evolving, and the information from this area will rival the superabundance of information derived from genomic sequences. In particular, cDNAs can be prepared even from single cells, and this approach has already yielded valuable information in several areas. To the extent that reliable and reproducible information, both quantitative and qualitative, can be generated from very small numbers of cells, there are rather remarkable possibilities for complementing functional and genetic analysis of developmental patterns with descriptions of changes in mRNAs. Dense array analysis promises to be particularly valuable for the rapid expression pattern of known genes, while other methods such as gel display approaches offer the opportunity of discovering unidentified genes or for investigating species whose cDNAs or genomes have not been studied intensively. Knowledge of mRNA structure, genomic location, and patterns of expression must be converted into information of the function of the encoded proteins. Each gene can be the subject of years


Biochemists, geneticists, developmental biologists, molecular biologists, physiologists, and cell biologists.


No. of pages:
© Academic Press 1999
Academic Press
eBook ISBN:
Hardcover ISBN:


@from:Praise for the Series @qu:"The Methods in Enzymology series represents the gold-standard." @source:--NEUROSCIENCE @qu:"Incomparably useful." @source:--ANALYTICAL BIOCHEMISTRY @qu:"It is a true 'methods' series, including almost every detail from basic theory to sources of equipment and reagents, with timely documentation provided on each page." @source:--BIO/TECHNOLOGY @qu:"The series has been following the growing, changing and creation of new areas of science. It should be on the shelves of all libraries in the world as a whole collection." @source:--CHEMISTRY IN INDUSTRY @qu:"The appearance of another volume in that excellent series, Methods in Enzymology, is always a cause for appreciation for those who wish to successfully carry out a particular technique or prepare an enzyme or metabolic intermediate without the tiresome prospect of searching through unfamiliar literature and perhaps selecting an unproven method which is not easily reproduced." @source:--AMERICAN SOCIETY OF MICROBIOLOGY NEWS @qu:"If we had some way to find the work most often consulted in the laboratory, it could well be the multi-volume series Methods in Enzymology...a great work." @source:--ENZYMOLOGIA @qu:"A series that has established itself as a definitive reference for biochemists." @source:--JOURNAL OF CHROMATOGRAPHY

About the Serial Volume Editors

Sherman Weissman Serial Volume Editor

Affiliations and Expertise

School of Medicine, Boyer Center for Molecular Medicine, Yale University, New Haven, Connecticut, U.S.A.

About the Editor-in-Chiefs

John Abelson Editor-in-Chief

Affiliations and Expertise

California Institute of Technology, Division of Biology, Pasadena, U.S.A.

Melvin Simon Editor-in-Chief

Affiliations and Expertise

The Salk Institute, La Jolla, CA, USA