COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Brain Warping - 1st Edition - ISBN: 9780126925357

Brain Warping

1st Edition

Editor: Arthur Toga
eBook ISBN: 9780126925357
eBook ISBN: 9780080525549
Imprint: Academic Press
Published Date: 12th November 1998
Page Count: 385
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Brain Warping is the premier book in the field of brain mapping to cover the mathematics, physics, computer science, and neurobiological issues related to brain spatial transformation and deformation correction. All chapters are organized in a similar fashion, covering the history, theory, and implementation of the specific approach discussed for ease of reading. Each chapter also discusses the computer science implementations, including descriptions of the programs and computer codes used in its execution. Readers of Brain Warping will be able to understand all of the approaches currently used in brain mapping, incorporating multimodality, and multisubject comparisons.

Key Features

@introbul:Key Features @bul:* The only book of its kind

  • Subject matter is the fastest growing area in the field of brain mapping
  • Presents geometrically-based approaches to the field of brain mapping
  • Discusses intensity-based approaches to the field of brain mapping


Neuroscientists, academic neurologists, and "mappers"; students, researchers, and laboratory staff involved in the study of the brain.

Table of Contents

Overview: A.W. Toga, An Introduction to Brain Warping. J. Ashburner and K. Friston, Spatial Normalization. Intensity Based Approaches: R. Bajcsy, Elastic Deformation Utilizing a Mechanical System. S. Kovacic, Multi-Resolution; Multiscale Approaches. S. Warfield, A. Robatino, J. Dengler, F. Jolesz, and R. Kikinis, Nonlinear Registration and Template Driven Segmentation. G. Christensen, M.I. Miller, and S.C. Joshi, Bayesian Framework for Image Registration Using Eigenfunctions. J. Gee, Finite Element Methods. M. Miller, S.C. Joshi, and G.E. Christensen, Large Deformation Fluid Diffeomorphisms for Landmark and Image Matching. D.L. Collins and A.C. Evans, ANIMAL: Automatic Nonlinear Image Matching and Anatomical Labeling. J.-P. Thirion, Diffusing Models and Applications. F.L. Bookstein, Linear Methods for Nonlinear Maps. H. Mueller and D. Ruprecht, Spatial Interpolants for Warping. M.W. Vannier, Global Pattern Matching. G. Subsol, Crest-Lines for Curve Based Warping. D. Terzopolous, Snakes in Warping and Matching. J.H. Downs III, J.L. Lancaster, and P.T. Fox, Surface Based Spatial Normalization Using Convex Hulls. S. Lavallee, E. Bittar, and R. Szeliski, Elastic Registration and Inference Using Octree-Splines. J.W. Haller, Brain Templates. P. Thompson and A.W. Toga, Anatomically-Driven Strategies for High-Dimensional Brain Image Warping and Pathology Detection. H. Drury, D.C. Van Essen, M. Corbetta, and A. Z. Snyder, Surface-Based Analyses of the Human Cerebral Cortex. R.P. Woods, Automated Global Polynomial Warping. Subject Index.


No. of pages:
© Academic Press 1999
12th November 1998
Academic Press
eBook ISBN:
eBook ISBN:

About the Editor

Arthur Toga

Affiliations and Expertise

University of California, Los Angeles, U.S.A.

Ratings and Reviews