Biophysical Tools for Biologists, Volume 89

1st Edition

In Vivo Techniques

Serial Volume Editors: John Correia H. William Detrich, III
Hardcover ISBN: 9780123725219
eBook ISBN: 9780080919782
Imprint: Academic Press
Published Date: 3rd November 2008
Page Count: 704
185.00 + applicable tax
110.00 + applicable tax
137.00 + applicable tax
161.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

Section 1. Fluorescence Methods 1) Photoactivation and Photobleaching Techniques for Analysis of Organelle Biogenesis in vivo 2) Analysis of the Dynamics of Living Cells by Fluorescence Correlation Spectroscopy 3) Molecular Sensors Based on Fluorescence Resonance Energy Transfer to Visualize Cellular Dynamics 4) Real-Time Fluorescence of Protein Folding in vivo 5) Microfluidic Glucose Stimulation of Ca+2 Oscillations in Pancreatic Islets Section 2. Microscopic Methods 6) Introduction to Optical Sectioning: Confocal, Deconvolution, and Two-Photon 7) Use of Electron Tomography to Elucidate Sub-Cellular Structure and Function 8) Proteomics of Macromolecular Complexes by Cellular Cryo-Electron Tomography 9) Total Internal Reflectance Microscopy (TIRF) 10) Atomic Force Microscopy of Living Cells 11) Real-Time Kinetics of Gene Activity in Individual Bacteria 12) Measurement of Cytoskeletal Proteins Globally and Locally in vivo 13) Infrared and Raman Microscopy in Cell Biology 14) Imaging Fluorescent Mice in vivo by Confocal Microscopy 15) Nanoscale Imaging of Intracellular Fluorescent Proteins: Breaking the Diffraction Barrier Section 3. Methods at the In Vitro/In Vivo Interface 16) Analysis of Protein Posttranslational Modification by Mass Spectrometry 17) Imaging Mass Spectrometry 18) Wet EM Using Quantum Dots 19) Single Cell Capillary Electrophoresis Section 4. Methods for Diffusion, Viscosity, Force and Displacement 20) Single-Molecule Force Spectroscopy in Living Cells 21) Magnetic Bead Force Applications 22) Measurement of Membrane-Cytoskeleton Adhesion Using Laser Optica

Description

Driven in part by the development of genomics, proteomics, and bioinformatics as new disciplines, there has been a tremendous resurgence of interest in physical methods to investigate macromolecular structure and function in the context of living cells. This volume in Methods in Cell Biology is devoted to biophysical techniques in vivo and their applications to cellular biology. The volume covers methods-oriented chapters on fundamental as well as cutting-edge techniques in molecular and cellular biophysics. This book is directed toward the broad audience of cell biologists, biophysicists, pharmacologists, and molecular biologists who employ classical and modern biophysical technologies or wish to expand their expertise to include such approaches. It will also interest the biomedical and biotechnology communities for biophysical characterization of drug formulations prior to FDA approval.

Key Features

  • Describes techniques in the context of important biological problems
  • Delineates critical steps and potential pitfalls for each method

Readership

Cell biologists, biophysicists, pharmacologists, and molecular biologists


Details

No. of pages:
704
Language:
English
Copyright:
© Academic Press 2008
Published:
Imprint:
Academic Press
eBook ISBN:
9780080919782
Hardcover ISBN:
9780123725219

About the Serial Volume Editors

John Correia Serial Volume Editor

Affiliations and Expertise

University of Mississippi Medical Center, Jackson, USA

H. William Detrich, III Serial Volume Editor

Professor of Biochemistry and Marine Biology at Northeastern University, promoted 1996. Joined Northeastern faculty in 1987. Previously a faculty member in Dept. of Biochemistry at the University of Mississippi Medical Center, 1983-1987.Principal Investigator in the U.S. Antarctic Program since 1984. Twelve field seasons "on the ice" since 1981. Research conducted at Palmer Station, Antarctica, and McMurdo Station, Antarctica.Research areas: Biochemical, cellular, and physiological adaptation to low and high temperatures. Structure and function of cytoplasmic microtubules and microtubule-dependent motors from cold-adapted Antarctic fishes. Regulation of tubulin and globin gene expression in zebrafish and Antarctic fishes. Role of microtubules in morphogenesis of the zebrafish embryo. Developmental hemapoiesis in zebrafish and Antarctic fishes. UV-induced DNA damage and repair in Antarctic marine organisms.

Affiliations and Expertise

Northeastern University, Boston, MA, USA