COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Biomechanics of Living Organs - 1st Edition - ISBN: 9780128040096, 9780128040607

Biomechanics of Living Organs

1st Edition

Hyperelastic Constitutive Laws for Finite Element Modeling

Authors: Yohan Payan Jacques Ohayon
Hardcover ISBN: 9780128040096
eBook ISBN: 9780128040607
Imprint: Academic Press
Published Date: 9th June 2017
Page Count: 602
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Part 1: Constitutive laws for biological living tissues
1. Hyperelasticity Modeling for Incompressible Passive Biological Tissues
2. Current Hyperelastic Models for Contractile Tissues: Application to Cardiovascular Mechanics
3. Visco-hyperelastic strain energy function
4. Constitutive Formulations for Soft Tissue Growth and Remodeling
5. Strain energy function for damaged tissues

Part 2: Passive soft organs
6. Brain – Biomechanical modeling of brain soft tissues for medical applications
7. Oesophagus – Modeling of esophageal structure and function in health and disease
8. Aorta – Mechanical properties, histology, and biomechanical modeling
9. Arteries and Coronaries Arterial – Wall Stiffness and Atherogenesis in Human Coronaries
10. Breast – Clinical applications of breast biomechanics
11. Liver – Non linear Biomechanical model of the Liver
12. Abdomen – Mechanical modeling and clinical applications
13. Small Intestine
14. Bladder/prostate/rectum – Biomechanical Models of the Mobility of Pelvic Organs in the Context of Prostate Radiotherapy
15. Uterus – Biomechanical modeling of uterus. Application to a childbirth simulation
16. Skin – Skin mechanics

Part 3: Active soft organs
17. Skeletal muscle – Three-dimensional modeling of active muscle tissue: The why, the how, and the future
18. Face – Computational modelling of the passive and active components of the face
19. Tongue – Human tongue biomechanical modeling
20. Upper airways – FRANK: a Hybrid 3D Biomechanical Model of the Head and Neck
21. Heart – Adaptive reorientation of myofiber orientation in a model of biventricular cardiac mechanics: the effect of triaxial active stress, passive shear stiffness, and activation sequence

Part 4: Musculo-skeletal models
22. Spine – Relative contribution of structure and materials in the biomechanical behavior of the human spine
23. Thigh – Modeling of the Thigh: a 3D deformable approach considering
muscle interactions
24. Calf – Subject-specific computational prediction of the effects of elastic compression in the calf
25. Foot – Biomechanical modeling of the foot


Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ.

Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods.

When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model.

Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics.

Key Features

  • Covers hyper elastic frameworks for large tissue deformations
  • Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue
  • Evaluates the physical meaning of proposed energy functions


Biomedical Engineers, Biomechanical Engineers, Graduate Students of Biomedical Engineering, Clinicians, Tissue Engineers


No. of pages:
© Academic Press 2017
9th June 2017
Academic Press
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Authors

Yohan Payan

Yohan Payan leads the CAMI team (Computer Assisted Medical Interventions) of TIMC-IMAG Laboratory. With an engineering background, his main research interests concern the biomechanical modelling of soft tissues. He received the 2012 Senior Prize of the French Biomechanics Society. During the last fifteen years, he has co-supervised 25 PhD students, written close to 300 papers and edited two books focused on biomechanics for CAMI. During the same period, he spent two sabbatical years in Chile (Univ. of Santiago) and Canada (UBC, Vancouver) and was invited as a keynote speaker in more than twenty international conferences.

Affiliations and Expertise

Leader, CAMI (Computer Assisted Medical Interventions), TIMC-IMAG Laboratory, La Tronche, France

Jacques Ohayon

Jacques Ohayon received his MSc degree in Biomechanical Engineering at University of Compiègne (UTC) in France in 1982 and his PhD in Cardiac Mechanics in 1985 at the University of Paris 12 Val-de-Marne (UPVM). Since 2003, he performs his research at the Laboratory TIMC-CNRS UMR 5525 of Grenoble in the group Cellular/Tissular Dynamics and Functional Microscopy (DyCTiM). From 2006 to 2007 he was an invited senior scientist at the Laboratory of Integrative Cardiovascular Imaging Science at the NIH, USA. His current research interests are in biomechanics of atherosclerotic plaque, plaque detection, plaque rupture prediction, plaque growth and development of new clinical tools for imaging the elasticity of vulnerable plaque based on clinical OCT, MRI and IVUS sequences.

Affiliations and Expertise

Research, Cullular/Tissualr Dynamics and Functional Microscopy (DyCTiM), Laboratory TIMC-CNRS UMR 5525 of Grenoble, La Tronche, France