COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Biomathematics - 1st Edition - ISBN: 9780444502735, 9780080528076


1st Edition

Mathematics of Biostructures and Biodynamics

0.0 star rating Write a review
Editors: S. Andersson K. Larsson M. Larsson M. Jacob
Hardcover ISBN: 9780444502735
eBook ISBN: 9780080528076
Imprint: Elsevier Science
Published Date: 21st October 1999
Page Count: 525
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


This book presents new mathematics for the description of structure and dynamics in molecular and cellular biology. On an exponential scale it is possible to combine functions describing inner organisation, including finite periodicity, with functions for outside morphology into a complete definition of structure. This mathematics is particularly fruitful to apply at molecular and atomic distances. The structure descriptions can then be related to atomic and molecular forces and provide information on structural mechanisms. The calculations have been focussed on lipid membranes forming the surface layers of cell organelles. Calculated surfaces represent the mid-surface of the lipid bilayer. Membrane dynamics such as vesicle transport are described in this new language. Periodic membrane assemblies exhibit conformations based on the standing wave oscillations of the bilayer, considered to reflect the true dynamic nature of periodic membrane structures. As an illustration the structure of an endoplasmatic reticulum has been calculated. The transformation of such cell membrane assemblies into cubosomes seems to reflect a transition into vegetative states. The organisation of the lipid bilayer of nerve cells is analyzed, taking into account an earlier observed lipid bilayer phase transition associated with the depolarisation of the membrane. Evidence is given for a new structure of the alveolar surface, relating the mathematical surface defining the bilayer organisation to new experimental data. The surface layer is proposed to consist of a coherent phase, consisting of a lipid-protein bilayer curved according to a classical surface - the CLP surface. Without employing this new mathematics it would not be possible to give an analytical description of this structure and its deformation during the respiration cycle. In more general terms this mathematics is applied to the description of the structure and dynamic properties of motor proteins, cytoskeleton proteins, and RNA/DNA. On a macroscopic scale the motions of cilia, sperm and flagella are modelled.
This mathematical description of biological structure and dynamics, biomathematics, also provides significant new information in order to understand the mechanisms governing shape of living organisms.

Table of Contents

Chapter headings: Introduction. Counting, algebra and periodicity - the roots of mathematics are the roots of life. Nodal surfaces of tetragonal and hexagonal symmetry, and rods. Nodal surfaces, planes, rods and transformations. Motion in biology. Periodicity in biology - periodic motion. Finite periodicity and the cubosomes. Cubic cell membrane systems/cell organelles. Cells and their division - motion in muscles and in DNA. Concentration gradients, filaments, motor proteins and again - flagella. Transportation. Icosahedral symmetry, chathrin structures, spikes, axons, the tree, and solitary waves. Axon membranes and synapses - a role of lipid bilayer structure in nerve signals. The lung surface structure and respiration. Epilogue. Appendices.


No. of pages:
© Elsevier Science 1999
21st October 1999
Elsevier Science
Hardcover ISBN:
eBook ISBN:

About the Editors

S. Andersson

Affiliations and Expertise

Sandviks Forskningsinstitut, S-380 74 Löttorp, Sweden

K. Larsson

Kare Larsson, Camurus Lipid Research Foundation, Lund, Sweden.

Affiliations and Expertise

KL Chem AB, S-237 34 Bjärred and Camurus Lipid Research, S-223 70 Lund, Sweden

M. Larsson

Affiliations and Expertise

Lund University, Department of Clinical Physiology, S-214 01 Malmö, Sweden

M. Jacob

Affiliations and Expertise

Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden

Ratings and Reviews