COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Attractors of Evolution Equations - 1st Edition - ISBN: 9780444890047, 9780080875460

Attractors of Evolution Equations, Volume 25

1st Edition

Authors: A.V. Babin M.I. Vishik
eBook ISBN: 9780080875460
Imprint: North Holland
Published Date: 9th March 1992
Page Count: 531
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Quasilinear Evolutionary Equations and Semigroups Generated by Them. Maximal Attractors of Semigroups. Attractors and Unstable Sets. Some Information on Semigroups of Linear Operators. Invariant Manifolds of Semigroups and Mapping at Equilibrium Points. Steady-state Solutions. Differentiability of Operators of Semigroups Generated by Partial Differential Equations. Semigroups Depending on a Parameter. Dependence on a Parameter of Attractors of Differentiable Semigroups and Uniform Asymptotics of Trajectories. Hausdorff Dimension of Attractors. Bibliography. Index.


Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.


No. of pages:
© North Holland 1992
9th March 1992
North Holland
eBook ISBN:

Reviews excellent introduction to a difficult subject. @source:Mathematical Reviews

Ratings and Reviews

About the Authors

A.V. Babin

Affiliations and Expertise

Moscow Institute for Railroad, Transportation Engineers (MIIT), Moscow, Russia

M.I. Vishik

Affiliations and Expertise

Moscow State University, Moscow, Russia