Analytical Solutions for Extremal Space Trajectories - 1st Edition - ISBN: 9780128140581, 9780128140598

Analytical Solutions for Extremal Space Trajectories

1st Edition

Authors: Dilmurat Azimov
eBook ISBN: 9780128140598
Paperback ISBN: 9780128140581
Imprint: Butterworth-Heinemann
Published Date: 30th August 2017
Page Count: 330
Tax/VAT will be calculated at check-out Price includes VAT (GST)
15% off
15% off
15% off
15% off
160.86
136.73
108.00
91.80
91.00
77.35
150.00
127.50
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Analytical Solutions for Extremal Space Trajectories presents an overall treatment of the general optimal control problem, in particular, the Mayer’s variational problem, with necessary and sufficient conditions of optimality. It also provides a detailed derivation of the analytical solutions of these problems for thrust arcs for the Newtonian, linear central and uniform gravitational fields. These solutions are then used to analytically synthesize the extremal and optimal trajectories for the design of various orbital transfer and powered descent and landing maneuvers. Many numerical examples utilizing the proposed analytical synthesis of the space trajectories and comparison analyses with numerically integrated solutions are provided.

This book will be helpful for engineers and researchers of industrial and government organizations, and is also a great resource for university faculty and graduate and undergraduate students working, specializing or majoring in the fields of aerospace engineering, applied celestial mechanics, and guidance, navigation and control technologies, applied mathematics and analytical dynamics, and avionics software design and development.

Key Features

  • Features an analyses of Pontryagin extremals and/or Pontryagin minimum in the context of space trajectory design
  • Presents the general methodology of an analytical synthesis of the extremal and optimal trajectories for the design of various orbital transfer and powered descent and landing maneuvers
  • Assists in developing the optimal control theory for applications in aerospace technology and space mission design

Readership

Engineers and researchers of industrial and government organizations; University faculty and graduate and undergraduate students working, specializing or majoring in the fields of aerospace engineering, applied celestial mechanics, and guidance, navigation and control technologies, applied mathematics and analytical dynamics as well as avionics software design and development

Table of Contents

1. Introduction
2. Optimal and Extremal Trajectories
3. Motion with Constant Power and Variable Specific Impulse
4. Motion with Variable Power and Constant Specific Impulse
5. Motion with Constant Power and Constant Specific Impulse
6. Extremal Trajectories in a Linear Central Field
7. Extremal Trajectories in a Uniform Gravity Field
8. Number of Thrust Arcs for Extremal Orbital Transfers
9. Some Problems of Trajectory Synthesis in the Newtonian Field
10. Conclusions
11. Appendix
12. Nomenclature

Details

No. of pages:
330
Copyright:
© Butterworth-Heinemann 2018
Published:
Imprint:
Butterworth-Heinemann
eBook ISBN:
9780128140598
Paperback ISBN:
9780128140581

About the Author

Dilmurat Azimov

Dilmurat Azimov has nearly 25 years of experience in the areas of space trajectory optimization, guidance, navigation and control of flight vehicles, and orbit determination using observations. His expertise includes derivation of the analytical solutions for optimal control problems, and their application in mission design and development and implementation of guidance, control and targeting schemes.

Affiliations and Expertise

Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI