COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Analysis and Synthesis of Singular Systems - 1st Edition - ISBN: 9780128237397

Analysis and Synthesis of Singular Systems

1st Edition

0.0 star rating Write a review
Authors: Zhiguang Feng Jiangrong Li Peng Shi Haiping Du Zhengyi Jiang
Paperback ISBN: 9780128237397
Imprint: Academic Press
Published Date: 2nd November 2020
Page Count: 270
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1 Introduction
1.1 Background
1.2 Research Problems
1.3 Literature Review
1.4 Book Outline

2 Dissipative Control and Filtering of Singular Systems
2.1 Dissipative Control of Continuous-time Singular Systems
2.2 Dissipative Control of Discrete-time Singular Systems
2.3 Dissipative Filtering of Singular Systems

3 H∞ Control with Transients for Singular Systems
3.1 Performance Measure
3.2 Controller Design
3.3 Illustrative Examples
3.4 Conclusion

4 Delay-dependent Admissibility and H∞ Control of Discrete Singular Delay Systems
4.1 New Admissibility Analysis for Discrete Singular Systems
4.2 Delay-dependent Robust H∞ Controller Synthesis for Discrete Singular Delay Systems

5 Delay-dependent Dissipativity Analysis and Synthesis of Singular Delay Systems
5.1 Dissipativity Analysis for Discrete Singular Systems with Time-varying Delay
5.2 Dissipativity Analysis and Dissipative Control of Singular Time-delay Systems
5.3 Robust Reliable Dissipative Filtering for Discrete Delay Singular Systems

6 State-feedback Control for Singular Markovian Systems
6.1 Admissibilization and H∞ Control for Singular Markovian Systems
6.2 Reliable Dissipative Control for Singular Markovian Systems

7 Sliding Mode Control of Singular Stochastic Markov Jump Systems
7.1 Performance Measure
7.2 Admissibilization of SSMSs
7.3 Application to SMC
7.4 Examples
7.5 Conclusion

8 Admissibility Analysis for Fuzzy Singular Systems with Time Delay
8.1 Admissibility Analysis for Takagi-Sugeno Fuzzy Singular Systems with Time Delay
8.2 Admissibilization of Singular Interval-valued Fuzzy Systems


Description

Analysis and Synthesis of Singular Systems provides a base for further theoretical research and a design guide for engineering applications of singular systems. The book presents recent advances in analysis and synthesis problems, including state-feedback control, static output feedback control, filtering, dissipative control, H∞ control, reliable control, sliding mode control and fuzzy control for linear singular systems and nonlinear singular systems. Less conservative and fresh novel techniques, combined with the linear matrix inequality (LMI) technique, the slack matrix method, and the reciprocally convex combination approach are applied to singular systems.

This book will be of interest to academic researchers, postgraduate and undergraduate students working in control theory and singular systems.

Key Features

  • Discusses recent advances in analysis and synthesis problems for linear singular systems and nonlinear singular systems
  • Offers a base for further theoretical research as well as a design guide for engineering applications of singular systems
  • Presents several necessary and sufficient conditions for delay-free singular systems and some less conservative results for time-delay singular systems

Readership

Researchers and graduate students in Electrical engineering, Chemical engineering, Mechanical engineering, Systems engineering, Power systems engineering, Electro-mechanical engineering, Mechatronic engineering


Details

No. of pages:
270
Language:
English
Copyright:
© Academic Press 2021
Published:
2nd November 2020
Imprint:
Academic Press
Paperback ISBN:
9780128237397

Ratings and Reviews


About the Authors

Zhiguang Feng

Zhiguang Feng received the B.S. degree in automation from Qufu Normal University, Rizhao, China, in 2006, the M.S. degree in Control Science and Engineering from Harbin Institute of Technology, Harbin, China, in 2009, and the Ph.D. Degree in the Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, in 2013. He was a Research Associate in the Department of Mechanical Engineering, University of Hong Kong, Hong Kong, from Oct. 2013 to Feb. 2014. From Mar. 2014 to Apr. 2015, he was a visiting fellow in the School of Computing, Engineering and Mathematics, University of Western Sydney, Australia. He was appointed with Victoria University in Australia as Postdoctoral Research Fellow within the College of Engineering and Science from Oct. 2015 to Mar. 2017.

Affiliations and Expertise

Professor, College of Automation, Harbin Engineering University, Harbin, China

Jiangrong Li

Jiangrong Li received the B.S degree in Mathematics from Shaanxi Normal University, Xi’an, China, in 2002, and the M.S degree in Operational Research and Cybernetics and the PhD degree in the Applied Mathematics from Xi’dian University, Xi’an, China, in 2006 and 2012, respectively. From 2017 to 2018, she was a Visiting Fellow with the College of Engineering and Science, Victoria University, Australia.

Affiliations and Expertise

Associate Professor, College of Mathematics and Computer Science, Yan’an University, China

Peng Shi

Peng Shi (M-95/SM-98/F-15) received the PhD degree in Electrical Engineering from the University of Newcastle, Australia in 1994; the PhD degree in Mathematics from the University of South Australia in 1998. He was awarded the Doctor of Science degree from the University of Glamorgan, UK in 2006, and the Doctor of Engineering degree from the University of Adelaide in 2015.

Affiliations and Expertise

Professor, University of Adelaide, and Victoria University, Australia

Haiping Du

Haiping Du has more than 15-year experience on the area of modelling, dynamics and control of electrified vehicles. Dr Du received his PhD degree in mechanical design and theory from Shanghai Jiao Tong University, Shanghai, PR China, in 2002. Previously, Dr Du worked as Research Fellow in University of Technology, Sydney and as Post-Doctoral Research Associate in Imperial College London and the University of Hong Kong, respectively.

Affiliations and Expertise

Professor, School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Australia

Zhengyi Jiang

Zhengyi Jiang is currently Senior Professor and Leader of Advanced Micro Manufacturing Centre at the University of Wollongong (UOW). He has been carrying out research on rolling mechanics with significant expertise in rolling theory and technology, tribology in metal manufacturing, contact mechanics and computational mechanics in metal manufacturing, numerical simulation of metal manufacturing, advanced micro manufacturing, development of novel composites, and artificial intelligent applications in rolling process. He obtained his PhD from Northeastern University in 1996 and was promoted full professor at Northeastern University in 1998 and at UOW in 2010. He has over 620 publications (more than 430 journal articles) and 3 monographs in the area of advanced metal manufacturing. He has been awarded over 38 prizes and awards from Australia, Japan, Romania and China, including ARC Future Fellowship (FT3), Australian Research Fellowship (twice), Endeavour Australia Cheung Kong Research Fellowship and Japan Society for the Promotion of Science (JSPS) Invitation Fellowship.

Affiliations and Expertise

Distinguished Professor, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Australia