Air and Spaceborne Radar Systems
1st Edition
An Introduction
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. ""This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's role within the system when carrying out is assigned missions, showing the possibilities of radar as well as its limitations. Finally, given the changing operational requirements and the potential opened up by modern technological developments, a concluding section describes how radar may evolve in the future.
The authors review the current state of the main types of airborne and spaceborne radar systems, designed for specific missions as well as for the global environment of their host aircraft or satellites. They include numerous examples of the parameters of these radars. The emphasis in the book is not only on a particular radar technique, but equally on the main radar functions and missions. Even if a wide range of techniques are described in this book, the focus is on those which are connected to practical applications.
Readership
Technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors.
Table of Contents
Part I ù General Principles Chapter 1 ù The History and Basic Principles of Radar 1.1 History 1.2 Basic Principles Chapter 2 ù Initial Statements of OperationalRequirements 2.1 Introduction 2.2 Missions 2.3 Carriers and Weapons 2.4 System Functions 2.5 Definitions of Flight Conditions Chapter 3 ù The RADAR Equation 3.1 Introduction 3.2 Signal Transmission and Reception 3.3 Radar Equation in Free Space 3.4 The Radar Cross Section of a Target 3.5 Mathematical Modeling of the Received Signal 3.6 Direction of Arrival and Monopulse Measurement Chapter 4 ù Propagation 4.1 Introduction 4.2 Role of the Ground 4.3 The Role of the Troposphere 4.4 Other Phenomena Chapter 5 ù Noise and Spurious Signals 5.1 Introduction 5.2 Thermal Noise 5.3 Radiometric Noise 5.4 Spurious Echoes and Clutter Chapter 6 ù Detection of Point Targets 6.1 Introduction 6.2 The Optimal Receiver (White Noise) 6.3 Optimal Receiver for Known Non-white Noise 6.4 Adaptive Receiver for Unknown Non-white Noise 6.5 Space-time Adaptive Processing 6.6 Waveform and Ambiguity Function
Part II ù Target Detection and Tracking Chapter 7 ù Clutter Cancellation 7.1 Introduction 7.2 Waveform Selection 7.3 Improvement Factor and Spectral Purity 7.4 Dynamic Range and Linearity Chapter 8 ù Air-to-Air Detection 8.1 Introduction 8.2 Non-coherent Low-PRF Mode 8.3 Pulse-compression Radar 8.4 Low-PRF Doppler Radars (MTI) 8.5 High-PRF Radar 8.6 Pulse-Doppler Mode (High- and Medium-PRF) Chapter 9 ù Air Target Tracking 9.1 Introduction 9.2 Platform Motion and AttitudeùCoordinate Systems 9.3 Single-Target Tracking (STT) 9.4 Plot Tracking 9.5 Track-While-Scan (TWS) Chapter 10 ù Ground Target Detection and Tracking 10.1 Introduction 10.2 Detection and Tracking of Contrasted Targets 10.3 Detection and Tracking of Moving Ground Targets Chapter 11 ù Maritime Target Detection and Tracking 11.1 Maritime Surveillance Radars 11.2 Search Strategy 11.3 Surface Vessel Detection 11.4 Detection of Small Targets (Periscopes) 11.5 Maritime Target Tracking 11.6 Maritime Target Classification Chapter 12 ù Electromagnetic Pollution 12.1 Introduction 12.2 Electromagnetic Compatibility 12.3 Interference from Other Radar Components 12.4 Inter-equipment Interference on the Platform 12.5 Unintentional Interactions
Part III ù Ground Mapping and Imagery Chapter 13 ù Ground Mapping 13.1 Introduction 13.2 Principal Parameters 13.3 Ground Mapping with Monopulse Sharpening Chapter 14 ù Radar Imagery 14.1 Imaging Radar Applications 14.2 Image Quality 14.3 Special Techniques for Range Resolution Chapter 15 ù Synthetic Aperture Radar 15.1 Design Principle 15.2 SAR Ambiguities 15.3 Spaceborne SAR 15.4 SAR Operating Modes Chapter 16 ù Synthetic Aperture Radar Specific Aspects 16.1 Migrations 16.2 Phase Errors 16.3 Platform Motion 16.4 Spectral Purity 16.5 Signal Processing 16.6 Autofocus 16.7 Power Budget 16.8 Localization Accuracy 16.9 Other Processing Methods Chapter 17 ù Inverse Synthetic Aperture Radar (ISAR) 17.1 Objectives and Applications 17.2 Preliminary Description of ISAR 17.3 Imaging of a Ship at Sea Chapter 18 ù Other Observation Radars 18.1 Millimeter-wave Radars 18.2 Scatterometers 18.3 Altimeters
Part IV ù Principal Applications Chapter 19 ù Radar Applications and Roles 19.1 Civil Applications 19.2 Military Applications 19.3 Examples of Applications Chapter 20 ù Design Overview 20.1 Basic Equations 20.2 Generic Radar Configuration 20.3 Space Observation Radar 20.4 Air-surveillance Radar (AEW) 20.5 Maritime Surveillance Radar 20.6 Battlefield Surveillance 20.7 Interception Radar 20.8 Tactical Support Radar 20.9 Penetration Radar Chapter 21 ù Multifunction Radar 21.1 Introduction 21.2 Radar Modes and Functions 21.3 Technical Specifications 21.4 Technical Description Chapter 22 ù Technological Aspects 22.1 Introduction 22.2 The Major Stages in Technological Innovation 22.3 Advances in Radar Components 22.4 Space Technology
Part V ù Radars of the Future Chapter 23 ù The Changing Target 23.1 Introduction 23.2 Electromagnetic Signature 23.3 Radar Cross Section 23.4 Reducing Electromagnetic Signature 23.5 Conclusion Chapter 24 ù Operational Aspects 24.1 Introduction 24.2 RCS Values 24.3 Detection Range 24.4 Self-protection Range 24.5 Missions Chapter 25 ù Principal Limitations of Present-day Radars 25.1 Introduction 25.2 Physical Limitations 25.3 Technological Limitations 25.3.1 Waveform 25.3.2 Spectral Purity and Dynamic Range 25.3.3 Data Flow 25.3.4 Exploitation Chapter 26 ù Electronically Steered Antennas 26.1 Introduction 26.2 Operational and Technical Benefits of ESA for Airborne Radars 26.3 Competing ESA Solutions 26.4 Conclusion: ESA Solutions for Airborne Radars Chapter 27 ù Airborne and Spaceborne Radar Enhancement 27.1 Introduction 27.2 Response to Target RCS Reduction 27.3 Countering Electromagnetic Threats 27.4 Multiple and Evolving Targets; Angular Coverage 27.5 Space Imaging Radar Chapter 28 ù Conclusions List of Acronyms List of Symbols Bibliography About the Authors Index
Details
- No. of pages:
- 524
- Language:
- English
- Copyright:
- © William Andrew 2001
- Published:
- 27th March 2001
- Imprint:
- William Andrew
- Hardcover ISBN:
- 9781891121135
- eBook ISBN:
- 9780815516132
About the Authors
Philippe Lacomme
Affiliations and Expertise
Thomson-CSF Detexis Company
Jean-Claude Marchais
Affiliations and Expertise
Thomson-CSF Radars & Contre-Mesures
Jean-Philippe Hardange
Affiliations and Expertise
Thomson-CSF Detexis
Eric Normant
Affiliations and Expertise
Thomson-CSF Detexis
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.