Advances in Planar Lipid Bilayers and Liposomes - 1st Edition - ISBN: 9780128021163, 9780128022016

Advances in Planar Lipid Bilayers and Liposomes, Volume 21

1st Edition

Serial Editors: Ales Iglic Chandrashekhar Kulkarni Michael Rappolt
eBook ISBN: 9780128022016
Hardcover ISBN: 9780128021163
Imprint: Academic Press
Published Date: 20th March 2015
Page Count: 206
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  • Preface
  • Chapter One: Development of Polymer/Nanodiamond Composite Coatings to Control Cell Adhesion, Growth, and Functions
    • Abstract
    • 1 Introduction
    • 2 Materials and Methods
    • 3 Results
    • 4 Discussion
    • 5 Conclusions
    • Acknowledgments
  • Chapter Two: Tethered Phospholipid Bilayer Membranes: An Interpretation of the Electrochemical Impedance Response
    • Abstract
    • 1 Introduction
    • 2 Electrochemical Impedance Spectroscopy
    • 3 Electrochemical Impedance Response of Defects
    • 4 tBLM Parameters That Determine EI Response
    • 5 Conclusions
    • Acknowledgments
  • Chapter Three: Microscopy of Model Membranes: Understanding How Bcl-2 Proteins Mediate Apoptosis
    • Abstract
    • 1 Introduction
    • 2 Model Membranes and Techniques in Studying Bcl-2 Proteins
    • 3 Uncovering the Mechanisms of the Bcl-2 Family
    • 4 Summary and Future Directions
  • Chapter Four: Optical Microscopy of Giant Vesicles as a Tool to Reveal the Mechanism of Action of Antimicrobial Peptides and the Specific Case of Gomesin
    • Abstract
    • 1 Introduction
    • 2 Experimental Approaches Based on Optical Microscopy of GUVs
    • 3 Gomesin: A Case Study
    • 4 Concluding Remarks
    • Acknowledgments
  • Chapter Five: Steric Stabilizers for Cubic Phase Lyotropic Liquid Crystal Nanodispersions (Cubosomes)
    • Abstract
    • 1 An Introduction to Cubosomes: Self-Assembly of Lipids and Surfactants
    • 2 Applications of Cubosomes in Nanotechnology
    • 3 Preparation and Characterization of Cubosomes
    • 4 Agents for the Stabilization of Cubosomes
    • 5 Future Developments in the Stabilization of Cubosomes
    • 6 Conclusion
    • Acknowledgments
  • Index


The Elsevier book-series "Advances in Planar Lipid Bilayers and Liposomes’ (APLBL) provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.

Key Features

  • The APLBL book series gives a survey on recent theoretical as well as experimental results on lipid micro and nanostructures.
  • In addition, the potential use of the basic knowledge in applications like clinically relevant diagnostic and therapeutic procedures, biotechnology, pharmaceutical engineering and food products is presented.
  • An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.


experts in the field of chemistry, physics and biology of lipid micro- and nanostructures and biological membranes, and a podium for non-specialists working on the interdisciplinary front


No. of pages:
© Academic Press 2015
Academic Press
eBook ISBN:
Hardcover ISBN:

Ratings and Reviews

About the Serial Editors

Ales Iglic Serial Editor

Aleš Iglič received his B.Sc. and Ph.D. degrees in physics and M.Sc. degree in biophysics from the Department of Physics, and the Ph.D. degree in electrical engineering from the Faculty of Electrical Engineering, all from the University of Ljubljana. He is a Full Professor and the Head of Laboratory of Biophysics of the Faculty of Electrical Engineering at University of Ljubljana. His main research interests are in electrostatics, mechanics and statistical physics of lipid nanostructures and biological membranes. He is devoted to higher education, basic research in biophysics and close contacts to clinical practice. Prof. Iglič was visiting scientist and professor at Åbo Academy University in Turku (Finland), Friedrich Schiller University in Jena (Germany) and Czech Technical University in Prague (Czech Republic). He established collaborations with researchers from different universities across the Europe, USA and India and was supervisor of many M.Sc., Ph.D. and postdoctoral students from Slovenia, Czech Republic, Poland, Iran, Bulgaria, Germany, India and Israel. Since 2009 is the editor of Elsevier book series »Advances in Planar Lipid Bilayers and Liposomes« (APLBL).

Affiliations and Expertise

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Chandrashekhar Kulkarni Serial Editor

Chandrashekhar V. Kulkarni received his PhD in Chemical Biology from University of London for which he was in receipt of a Marie Curie Early Stage Researcher Fellowship at Imperial College London (2005-2008). Earlier he completed his BSc (1999) and MSc (2001) in Chemistry from Shivaji University Kolhapur, India and started his research career at the National Chemical Laboratory Pune, India. He had a few postdoc stints at University of Graz-Austria, University of Bayreuth-Germany and University of Cambridge-UK during which he worked on a wide range of projects. In March 2013 Dr Kulkarni started ‘Lipid Nanostructures Group’ focussing on highly interdisciplinary and cutting-edge projects. Some of his research interests include complex biomembranes and biomolecule interactions, nanostructured lipid particles as carrier systems, and novel nano-bio-applications of lipid nanostructures. Dr Kulkarni joined the editorial board of APLBL in early 2013 and later as an editor of this book series.

Affiliations and Expertise

University of Central Lancashire, UK

Michael Rappolt Serial Editor

Michael Rappolt has been appointed as Professor of Lipid Biophysics (School of Food Science and Nutrition) in April 2013. He received his MSc and PhD in physics from the University of Hamburg and achieved his habilitation at the University of Ljubljana in the Faculty of Health Sciences. He was Senior Researcher at the Synchrotron Trieste Outstation (Italy), Institute of Biophysics and Nanosystems Research (Austrian Academy of Sciences), before becoming Assistant Professor at Graz University of Technology. Professor Michael Rappolt is a leading authority on investigating the structure and dynamics of lipid membranes using small-angle X-ray scattering. His recent research activities have concentrated on the study of drug/membrane interactions with potential applications to drug delivery and food. Further research topics concentrate on characterising crystallization processes in food, the investigation of colloid interfaces and the determination of particle structures on the nanoscale. He also seeks to transfer standard measurement techniques applied in food research – such as mechanic (sound and shear) and thermodynamic sample manipulations to synchrotron sites – to understand food on a smaller (nanometre) and faster (microsecond) scale.

Affiliations and Expertise

University of Leeds, UK