Advances in Physical Organic Chemistry - 1st Edition - ISBN: 9780128022283, 9780128024294

Advances in Physical Organic Chemistry, Volume 49

1st Edition

Serial Editors: Ian Williams Nick Williams
eBook ISBN: 9780128024294
Hardcover ISBN: 9780128022283
Imprint: Academic Press
Published Date: 17th November 2015
Page Count: 312
Tax/VAT will be calculated at check-out Price includes VAT (GST)
25% off
25% off
25% off
25% off
25% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
256.00
192.00
192.00
192.00
192.00
192.00
204.80
204.80
155.00
108.50
108.50
108.50
108.50
108.50
124.00
124.00
183.00
128.10
128.10
128.10
128.10
128.10
146.40
146.40
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

<?xml version="1.0"?>

  • Advisory Board
  • Preface
  • Chapter One. Metal Ion-Promoted Leaving Group Assistance in the Light Alcohols
    • 1. Introduction
    • 2. Metal Ion-Promoted LGA
    • 3. Metal Ion-Promoted Alcoholysis of Phosphates
    • 4. LGA Provided by Metal Ions in the Acyl Transfer from Amides, Ureas, and Carbamates to Solvent ROH
    • 5. Conclusions and Speculations
  • Chapter Two. Medium Effects in Biologically Related Catalysis
    • 1. Introduction
    • 2. Phosphoryl Transfer Reactions
    • 3. Solvent Effects in Sulfuryl Transfer Reactions
    • 4. Solvent Effects in SN2 Reactions of S-Adenosylmethionine
    • 5. Decarboxylation Reactions
    • 6. Kemp Elimination
    • 7. Conclusions and Implications for Bioinspired Catalysis
  • Chapter Three. Combustion Pathways of Biofuel Model Compounds: A Review of Recent Research and Current Challenges Pertaining to First-, Second-, and Third-Generation Biofuels
    • 1. Introduction
    • 2. Overview of First-Generation Biofuels and Their Model Compounds
    • 3. Overview of Second-Generation Biofuels and Their Model Compounds
    • 4. Overview of Third- and Fourth-Generation Biofuels
    • 5. Challenges in Biofuel Combustion Engineering
    • 6. Conclusion
  • Chapter Four. Mechanistic Perspectives on Stereocontrol in Lewis Acid-Mediated Radical Polymerization: Lessons from Small-Molecule Synthesis
    • 1. Introduction
    • 2. Important Features of Radical Reactivity
    • 3. Radical Polymerization
    • 4. Lewis Acids in Radical-Based Polymer Synthesis
    • 5. Synthetic Radical Transformations
    • 6. Lewis Acids in Radical-Based Synthetic Transformations
    • 7. Some Lessons from Synthesis
    • 8. Conclusion
  • Subject Index
  • Author Index
  • Cumulative Index of Titles
  • Cumulative Index of Authors

Description

Advances in Physical Organic Chemistry series of volumes is the definitive resource for authoritative reviews of work in physical organic chemistry. It aims to provide a valuable source of information not only for physical organic chemists applying their expertise to both novel and traditional problems but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is quantitative, molecular level understanding of phenomena across a diverse range of disciplines.

Key Features

  • Reviews the application of quantitative and mathematical methods to help readers understand chemical problems
  • Provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry
  • Covers organic, organometallic, bioorganic, enzymes, and materials topics
  • The only regularly published resource for reviews in physical organic chemistry
  • Chapters are written by authoritative experts

  • Wide coverage of topics requiring a quantitative, molecular-level understanding of phenomena across a diverse range of disciplines



Readership

Researchers at all levels and in all sectors who need access to definitive reviews of topics requiring a quantitative, molecular-level understanding of chemical phenomena


Details

No. of pages:
312
Language:
English
Copyright:
© Academic Press 2015
Published:
Imprint:
Academic Press
eBook ISBN:
9780128024294
Hardcover ISBN:
9780128022283

About the Serial Editors

Ian Williams Serial Editor

Ian Williams has been Professor of Theoretical Organic Chemistry at the University of Bath since 1995. He has many years’ experience in the application of computational methods to the study of problems in physical organic chemistry. Born in Bournemouth, England, he studied at the University of Sheffield and gained his PhD under the supervision of James McKenna. He then spent two years in Richard Schowen’s laboratory at the University of Kansas, five years as a Royal Society Pickering Research Fellow at Cambridge in the sub-group of Theoretical Chemistry, and four years as an EPSRC Advanced Fellow in Bristol. Since his first appointment at Bath in 1989, he has taught physical organic and computational chemistry to all years of the Chemistry programmes and is currently a Director of Studies. His research uses computational modelling and simulation as tools to aid the interpretation of experimental observations, and he has published on a broad range of topics from atmospheric chemistry to enzyme mechanisms. A past Chair of the Royal Society of Chemistry Theoretical Chemistry Group and UK representative on the EuCheMS Division of Computational Chemistry, he now serves on the IUPAC Subcommittee on Structural and Mechanistic Chemistry, which has responsibility for the ICPOC international conferences on physical organic chemistry, and he chaired ICPOC21 in the UK. He is no relation to the other Co-Editor of Advances in Physical Organic Chemistry!

Affiliations and Expertise

University of Bath, UK

Nick Williams Serial Editor

Nick Williams has been Professor of Physical Organic Chemistry at the University of Sheffield since 2011. He has many years experience in experimental studies that are focused on understanding mechanism and reactivity in organic chemistry. He studied for his first degree at the University of Cambridge, where he stayed for his PhD under the supervision of Tony Kirby. After a further short post doctoral period and a position as temporary lector in organic chemistry at Trinity College, Cambridge, he spent two years at McGill University in the laboratory of Jik Chin as a Royal Society/NSERC research fellow. He was appointed to a lectureship in Sheffield in 1996, where he has remained since, and has taught physical organic chemistry at all undergraduate levels and is currently Chair of the Curriculum Committee. His research involves the design, synthesis and analysis of organic and inorganic compounds to dissect and quantify contributions to reactivity and catalysis. This has been particularly focused on biologically relevant reactions and artificial models that functionally mimic natural systems, but has embraced topics as diverse as light induced surface patterning and transmembrane signaling. He has been a past chair of the Royal Society of Chemistry Organic Reaction Mechanisms Committee (renamed the Physical Organic Group at the end of his tenure) and took a particular effort to provide events to nurture the younger physical organic chemistry community. He is not related to the other Co-Editor of Advances in Physical Organic Chemistry!

Affiliations and Expertise

University of Sheffield, UK