Advanced Power Generation Systems - 1st Edition - ISBN: 9780123838605, 9780123838612

Advanced Power Generation Systems

1st Edition

Authors: Ibrahim Dincer Calin Zamfirescu
Hardcover ISBN: 9780123838605
eBook ISBN: 9780123838612
Imprint: Elsevier
Published Date: 31st July 2014
Page Count: 656
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems.

The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems.

Key Features

  • The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration
  • Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass
  • Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses
  • Case studies and examples demonstrate how novel systems and performance assessment methods function in practice


Power Engineers, Electrical & Mechanical Engineers working in Renewable Energy

Table of Contents

  • Acknowledgments
  • Preface
  • Chapter 1: Fundamentals of Thermodynamics
    • Abstract
    • 1.1 Introduction
    • 1.2 Thermodynamic Properties and Basic Concepts
    • 1.3 Equations of State and Ideal Gas Behavior
    • 1.4 Laws of Thermodynamics
    • 1.5 Exergy
    • 1.6 Balance Equations for Thermodynamic Analysis
    • 1.7 Efficiency Definitions
    • 1.8 Concluding Remarks
  • Chapter 2: Energy, Environment, and Sustainable Development
    • Abstract
    • 2.1 Introduction
    • 2.2 Energy Resources Available on Earth
    • 2.3 Environmental Impact of Power Generation Systems
    • 2.4 Sustainability Assessment of Power Generation Technologies
    • 2.5 Concluding Remarks
  • Chapter 3: Fossil Fuels and Alternatives
    • Abstract
    • 3.1 Introduction
    • 3.2 Fuels Classification and Main Properties
    • 3.3 Fossil Fuels
    • 3.4 Alternative Fuels
    • 3.5 Concluding Remarks
  • Chapter 4: Hydrogen and Fuel Cell Systems
    • Abstract
    • 4.1 Introduction
    • 4.2 Hydrogen
    • 4.3 Hydrogen Production Methods
    • 4.4 Fuel Cells
    • 4.5 Fuel Cell Modeling
    • 4.6 Optimization of Fuel Cell Systems
    • 4.7 Integrated Fuel Cell Systems for Power Generation
    • 4.8 Concluding Remarks
  • Chapter 5: Conventional Power Generating Systems
    • Abstract
    • 5.1 Introduction
    • 5.2 Vapor Power Cycles
    • 5.3 Gas Power Cycles
    • 5.4 Combined Cycle Power Plants
    • 5.5 Hydropower Plants
    • 5.6 Concluding Remarks
  • Chapter 6: Nuclear Power Generation
    • Abstract
    • 6.1 Introduction
    • 6.2 Nuclear Reactions
    • 6.3 Nuclear Fuel
    • 6.4 Nuclear Reactors
    • 6.5 Nuclear-Based Cogeneration Systems
    • 6.6 Concluding Remarks
  • Chapter 7: Renewable-Energy-Based Power Generating Systems
    • Abstract
    • 7.1 Introduction
    • 7.2 Solar Power Generation Systems
    • 7.3 Wind Energy Systems
    • 7.4 Geothermal Power Generation Systems
    • 7.5 Biomass Energy Systems
    • 7.6 Ocean Energy Systems
    • 7.7 Concluding Remarks
  • Chapter 8: Integrated Power Generating Systems
    • Abstract
    • 8.1 Introduction
    • 8.2 Multistaged Systems
    • 8.3 Cascaded Systems
    • 8.4 Combined Systems
    • 8.5 Hybrid Systems
    • 8.6 Case Studies
    • 8.7 Concluding Remarks
  • Chapter 9: Multigeneration Systems
    • Abstract
    • 9.1 Introduction
    • 9.2 Key Processes and Subsystems for Multigeneration
    • 9.3 Assessment and Optimization of Multigeneration Systems
    • 9.4 Case Studies
    • 9.5 Concluding Remarks
  • Chapter 10: Novel Power Generating Systems
    • Abstract
    • 10.1 Introduction
    • 10.2 Novel Ammonia–Water Power Cycles
    • 10.3 Solar Thermoelectrical Power Generation
    • 10.4 Chemical Looping Combustion for Power Generation
    • 10.5 Linear Engine Power Generators
    • 10.6 Concluding Remarks
  • Appendix A: Conversion Factors
  • Appendix B: Thermophysical Properties
  • Index


No. of pages:
© Elsevier 2014
31st July 2014
Hardcover ISBN:
eBook ISBN:

About the Author

Ibrahim Dincer

Dr. Ibrahim Dincer is full Professor of Mechanical Engineering in the Faculty of Engineering and Applied Science at the University of Ontario Institute of Technology, Canada. He is also Vice President for Strategy of the International Association for Hydrogen Energy (IAHE) and Vice-President of the World Society of Sustainable Energy Technologies (WSSET). Renowned for his pioneering work on sustainable energy technologies, he has authored and co-authored numerous books and book chapters, more than a thousand refereed journal and conference papers, as well as technical reports. He has chaired national and international conferences, symposia, workshops and technical meetings. He has delivered more than 300 keynote and invited lectures. His main research interests include energy conversion and management, hydrogen and fuel cell systems and renewable energy technologies. Dr. Dincer is an active member of various scientific societies, and serves as Editor-in-Chief and Editorial Board member on several international journals, including Elsevier`s International Journal of Hydrogen Energy and Applied Energy. Dr. Dincer has received research, teaching and service awards, including the Premier’s Research Excellence Award in Ontario, Canada, in 2004. More recently, he has been identified as one of the 2014, 2015 and 2016 Most Influential Scientific Minds in Engineering. This honor, presented by Thomson Reuters, is given to researchers who rank in the top 1% for number of citations in their subject field in a given year.

Affiliations and Expertise

University of Ontario Institute of Technology (UOIT), Oshawa, Canada

Calin Zamfirescu

Affiliations and Expertise

Senior research associate and Sessional instructor, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology

Ratings and Reviews