Content

Preface

1. Introduction
 1.1. History note
 1.2. Applications of ion exchangers
 1.3. Structure of the book

2. Ion exchangers, their structure and major properties
 2.1. Ion exchange reactions in liquid phase
 2.2. Ion exchangers
 2.3. Hydrocarbon structure of ion exchange polymers
 2.4. Functional groups
 2.5. Inorganic ion exchangers
 2.6. Ion exchange capacity
 2.7. Physical structure
 2.8. Properties of ion exchange resins - summary

3. Specific interactions in ion exchange systems
 3.1. Chelating ion exchangers
 3.2. Imprinted functional polymers
 3.3. Ligand exchange
 3.4. Chiral recognition with ligand exchangers
 3.5. Bipolar materials

4. Interactions with organic and biochemical substances
 4.1. Sieve effects
4.2. Effects of ion recharging
4.3. Positioning of the functional groups in sorbed organics
4.4. Effect of coordination, hydrogen, and van der Waals bonds
4.5. Association of counterions
4.6. Hydrophobic interactions and complicated hydration effects

5. Redox materials
 5.1. Electron exchangers
 5.2. Redox resins
 5.3. Properties of redox materials
 5.4. Approaches to practical applications of redox materials

6. Impregnated resins
 6.1. Methods of impregnation
 6.2. Peculiarity of impregnated materials
 6.3. Equilibria involving impregnated materials
 6.4. Stability of impregnated materials
 6.5. Comparison with other separation methods

7. Interactions with water and aqueous solutions
 7.1. Early models of ion exchange
 7.2. Driving forces for swelling
 7.3. Factors affecting swelling
 7.4. Muli-phase model of internal water
 7.5. Water sorption isotherms
 7.6. Quantitative treatment of swelling
 7.7. Donnan equilibria
8. Physico-chemical description of ion exchange processes
 8.1. Chemical representation of ion exchange reactions
 8.2. Equivalent fraction
 8.3. Ion exchange isotherm
 8.4. Selectivity characteristics
 8.5. Thermodynamic description of ion exchange
 8.6. Phenomena affecting selectivity

9. Modern physico-chemical models
 9.1. Gibbs-Donnan models
 9.2. Högfldt's three-parameter model
 9.3. Soldatov's approach
 9.4. Surface complexation model

10. Kinetics of ion exchange
 10.1. Mechanism of ion exchange processes
 10.2. Rite-determining step
 10.3. Quantitative approaches to kinetics of ion exchange
 10.4. Examples of kinetic models
 10.5. Approaches to enhance the rate of ion exchange

11. Column processes
 11.1. Ion exchange in columns
 11.2. Breakthrough curve and performance of column
 11.3. Sorption front
 11.4. Hydrodynamic effects in columns
 11.5. Quantitative treatment of column processes
12. Ion exchange purification and separation
 12.1. Elution and Regeneration
 12.2. Cycles of ion exchange separation
 12.3. Removal of ionic mixture
 12.4. Extraction of ions
 12.5. Multistep deionisation
 12.6. Mixed bed deionisation

13. Analytical applications of ion exchangers
 13.1. Materials used in ion exchange chromatography
 13.2. Sensor applications
 13.3. Pre-treatment of samples
 13.4. Ion speciation in solutions

14. Technological schemes of ion exchange
 14.1. Multicolumn technology
 14.2. Fluidised bed and expanded bed
 14.3. Moving bed
 14.4. Consecutive columns (Cascade)

15. Dual-temperature separation
 15.1. Parametric elution
 15.2. Sirotherm process
 15.3. Principle of parametric pumping
 15.4. Parametric pumping in columns
 15.5. Continuous (open) parametric pumping
 15.6. Rocking wave separation
15.7. Schemes of dual-temperature separation

16. Treatment of gases and fumes
 16.1. Exchange reactions in gas phase
 16.2. Chemical sorption of gases
 16.3. Use of complexation in exchanger phase
 16.4. Redox materials in gas treatment
 16.5. Pressure and temperature reversible processes
 16.6. General approaches to ion exchange treatment of gases

17. Electroseparation with ion exchange materials
 17.1. Electrical current in ion exchangers
 17.2. Ion exchange membranes
 17.3. Electrotransport of ions through ion exchange membranes
 17.4. Practical aspects of electro-membrane separations
 17.5. Monovalent-ion permselective membranes
 17.6. Purification of organic substances with electrodialysis
 17.7. Bipolar membranes
 17.8. Electrochemical processes in packet beds
 17.9. Electrodialysis with filled compartments

18. Subjects which do not fit in other chapters
 18.1. Ion exchange synthesis
 18.2. Catalysis with ion exchange materials
 18.3. Deterioration of ion exchangers

19. Non-chemical aspects of ion exchange technology
 19.1. Approaches to the technology design
19.2. Economical aspects of ion exchange technology

19.3. Environmental aspects

Appendix I. Practical laboratory methods

I.1. Storing ion exchange resins

I.2. Swelling of ion exchange resins

I.3. Conditioning

I.4. Handling hydroxyl forms of anion exchangers

I.5. Water content

I.6. Mechanical stability of resin beads

I.7. Density and pore size of ion exchange resins

I.8. Water vapour sorption isotherms

I.9. Ion exchange columns

I.10. Column experiments

I.11. Ion exchange capacity of strong ion exchangers

I.12. Anion exchange capacity: separate determination of strong-base and weak-base groups

I.13. Titration of ion exchangers

Appendix II. Definitions