THE CHEMISTRY OF
RADICAL
POLYMERIZATION
THE CHEMISTRY OF RADICAL POLYMERIZATION

GRAEME MOAD
CSIRO Molecular and Health Technologies
Bayview Ave, Clayton, Victoria 3168, AUSTRALIA

and

DAVID H. SOLOMON
Department of Chemical and Biomolecular Engineering.
University of Melbourne, Victoria 3010, AUSTRALIA
Acknowledgments

Contents

1 INTRODUCTION ... 1
 1.1 References .. 8

2 RADICAL REACTIONS ... 11
 2.1 Introduction .. 11
 2.2 Properties of Radicals ... 12
 2.2.1 Structures of Radicals .. 12
 2.2.2 Stabilities of Radicals .. 14
 2.2.3 Detection of Radicals .. 14
 2.3 Addition to Carbon-Carbon Double Bonds 16
 2.3.1 Steric Factors ... 19
 2.3.2 Polar Factors ... 21
 2.3.3 Bond Strengths .. 22
 2.3.4 Stereoelectronic Factors ... 23
 2.3.5 Entropic Considerations ... 24
 2.3.6 Reaction Conditions ... 24
 2.3.6.1 Temperature .. 24
 2.3.6.2 Solvent .. 25
 2.3.7 Theoretical Treatments ... 26
 2.3.8 Summary .. 28
 2.4 Hydrogen Atom Transfer .. 29
 2.4.1 Bond Dissociation Energies .. 30
 2.4.2 Steric Factors ... 30
 2.4.3 Polar Factors ... 31
 2.4.4 Stereoelectronic Factors ... 32
 2.4.5 Reaction Conditions ... 33
 2.4.6 Abstraction vs Addition .. 34
 2.4.7 Summary .. 36
2.5 Radical-Radical Reactions

2.5.1 Pathways for Combination

2.5.2 Pathways for Disproportionation

2.5.3 Combination vs Disproportionation

2.5.3.1 Statistical factors

2.5.3.2 Steric factors

2.5.3.3 Polar factors

2.5.3.4 Steroelectronical and other factors

2.5.3.5 Reaction conditions

2.5.4 Summary

2.6 References

3 INITIATION

3.1 Introduction

3.2 The Initiation Process

3.2.1 Reaction with Monomer

3.2.2 Fragmentation

3.2.3 Reaction with Solvents, Additives, or Impurities

3.2.4 Effects of Temperature and Reaction Medium on Radical Reactivity

3.2.5 Reaction with Oxygen

3.2.6 Initiator Efficiency in Thermal Initiation

3.2.7 Photoinitiation

3.2.8 Cage Reaction and Initiator-Derived Byproducts

3.2.9 Primary Radical Termination

3.2.10 Transfer to Initiator

3.2.11 Initiation in Heterogeneous Polymerization

3.3 The Initiators

3.3.1 Azo-Compounds

3.3.1.1 Dialkyldiazenes

3.3.1.1.1 Thermal decomposition

3.3.1.2 Photochemical decomposition

3.3.1.3 Initiator efficiency

3.3.1.4 Transfer to initiator

3.3.1.2 Hyponitrites

3.3.2 Peroxides

3.3.2.1 Diacyl or diaroyl peroxides

3.3.2.1.1 Thermal decomposition

3.3.2.1.2 Photochemical decomposition

3.3.2.1.3 Initiator efficiency

3.3.2.1.4 Transfer to initiator and induced decomposition

3.3.2.1.5 Redox reactions

3.3.2.2 Dialkyl peroxydicarbonates

3.3.2.3 Peroxyesters
3.4.2.2.2 Alkoxy carbonyloxy radicals .. 127
3.4.2.3 Hydroxy radicals .. 128
3.4.2.4 Sulfate radical anion ... 129
3.4.2.5 Alkylperoxy radicals ... 130
3.4.3 Other Heteroatom-Centered Radicals .. 131
3.4.3.1 Silicon-centered radicals .. 131
3.4.3.2 Sulfur- and selenium-centered radicals 132
3.4.3.3 Phosphorus-centered radicals ... 132
3.3.6.1 Styrene homopolymerization .. 107
3.3.6.2 Acrylate homopolymerization .. 109
3.3.6.3 Copolymerization .. 110
3.3.5 Redox Initiators ... 104
3.3.5.1 Metal complex-organic halide redox systems 104
3.3.5.2 Ceric ion systems ... 105
3.3.6 Thermal Initiation .. 106
3.4 The Radicals .. 111
3.4.1 Carbon-Centered Radicals ... 112
3.4.1.1 Alkyl radicals .. 112
3.4.1.1.1 α-Cyanoalkyl radicals .. 113
3.4.1.2 Aryl radicals ... 117
3.4.1.3 Acyl radicals .. 117
3.4.2 Oxygen-Centered Radicals ... 118
3.4.2.1 Alkoxy radical ... 118
3.4.2.1.1 t-Butoxy radicals .. 119
3.4.2.1.2 Other t-alkoxy radicals .. 124
3.4.2.1.3 Primary and secondary alkoxy radical 125
3.4.2.2 Acyloxy and alkoxy carboxyloxy radicals 125
3.4.2.2.1 Benzoyloxy radicals ... 126
3.4.2.2.2 Alkoxy carboxyloxy radicals .. 127
3.4.3 Other Heteroatom-Centered Radicals .. 131
3.4.3.1 Silicon-centered radicals .. 131
3.4.3.2 Sulfur- and selenium-centered radicals 132
3.4.3.3 Phosphorus-centered radicals ... 132
3.5 Techniques ... 133
 3.5.1 Kinetic Studies ... 133
 3.5.2 Radical Trapping ... 133
 3.5.2.1 Spin traps ... 134
 3.5.2.2 Transition metal salts 136
 3.5.2.3 Metal hydrides .. 137
 3.5.2.4 Nitroxides .. 138
 3.5.2.5 α-Methystyrene dimer 140
 3.5.3 Direct Detection of End Groups 141
 3.5.3.1 Infra-red and UV-visible spectroscopy 141
 3.5.3.2 Nuclear magnetic resonance spectroscopy 142
 3.5.3.3 Electron paramagnetic resonance spectroscopy 143
 3.5.3.4 Mass spectrometry 143
 3.5.3.5 Chemical methods .. 144
 3.5.4 Labeling Techniques ... 145
 3.5.4.1 Radiolabeling ... 145
 3.5.4.2 Stable isotopes and nuclear magnetic resonance 146

3.6 References ... 149

4 PROPAGATION .. 167
 4.1 Introduction .. 167
 4.2 Stereosequence Isomerism - Tacticity 168
 4.2.1 Terminology and Mechanisms 168
 4.2.2 Experimental Methods for Determining Tacticity 173
 4.2.3 Tacticities of Polymers 173
 4.3 Regiosequence Isomerism - Head vs Tail Addition 176
 4.3.1 Monoene Polymers ... 176
 4.3.1.1 Poly(vinyl acetate) 178
 4.3.1.2 Poly(vinyl chloride) 179
 4.3.1.3 Fluoro-olefin polymers 180
 4.3.1.4 Alkyl polymers .. 181
 4.3.1.5 Acrylic polymers .. 182
 4.3.2 Conjugated Diene Polymers 182
 4.3.2.1 Polybutadiene .. 184
 4.3.2.2 Polychloroprene, polyisoprene 184
 4.4 Structural Isomerism - Rearrangement 185
 4.4.1 Cyclopolymerization ... 185
 4.4.1.1 1,6-Dienes ... 186
 4.4.1.2 Triene monomers ... 191
 4.4.1.3 1,4- and 1,5-dienes 192
 4.4.1.4 1,7- and higher 1,n-dienes 193
 4.4.1.5 Cyclo-copolymerization 194
 4.4.2 Ring-Opening Polymerization 194
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2.1 Vinyl substituted cyclic compounds</td>
<td>196</td>
</tr>
<tr>
<td>4.4.2.2 Methylene substituted cyclic compounds</td>
<td>199</td>
</tr>
<tr>
<td>4.4.2.3 Double ring-opening polymerization</td>
<td>205</td>
</tr>
<tr>
<td>4.4.3 Intramolecular Atom Transfer</td>
<td>208</td>
</tr>
<tr>
<td>4.4.3.1 Polyethylene and copolymers</td>
<td>208</td>
</tr>
<tr>
<td>4.4.3.2 Vinyl polymers</td>
<td>211</td>
</tr>
<tr>
<td>4.4.3.3 Acrylate esters and other monosubstituted monomers</td>
<td>211</td>
</tr>
<tr>
<td>4.4.3.4 Addition- abstraction polymerization</td>
<td>212</td>
</tr>
<tr>
<td>4.5 Propagation Kinetics and Thermodynamics</td>
<td>213</td>
</tr>
<tr>
<td>4.5.1 Polymerization Thermodynamics</td>
<td>213</td>
</tr>
<tr>
<td>4.5.2 Measurement of Propagation Rate Constants</td>
<td>216</td>
</tr>
<tr>
<td>4.5.3 Dependence of Propagation Rate Constant on Monomer Structure</td>
<td>218</td>
</tr>
<tr>
<td>4.5.4 Chain Length Dependence of Propagation Rate Constants</td>
<td>220</td>
</tr>
<tr>
<td>4.6 References</td>
<td>221</td>
</tr>
<tr>
<td>5 TERMINATION</td>
<td>233</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>233</td>
</tr>
<tr>
<td>5.2 Radical-Radical Termination</td>
<td>234</td>
</tr>
<tr>
<td>5.2.1 Termination Kinetics</td>
<td>235</td>
</tr>
<tr>
<td>5.2.1.1 Classical kinetics</td>
<td>235</td>
</tr>
<tr>
<td>5.2.1.2 Molecular weights and molecular weight averages</td>
<td>238</td>
</tr>
<tr>
<td>5.2.1.3 Molecular weight distributions</td>
<td>240</td>
</tr>
<tr>
<td>5.2.1.4 Diffusion controlled termination</td>
<td>242</td>
</tr>
<tr>
<td>5.2.1.4.1 Termination at low conversion</td>
<td>244</td>
</tr>
<tr>
<td>5.2.1.4.2 Termination at medium to high conversions</td>
<td>248</td>
</tr>
<tr>
<td>5.2.1.5 Termination in heterogeneous polymerization</td>
<td>249</td>
</tr>
<tr>
<td>5.2.1.6 Termination during living radical polymerization</td>
<td>250</td>
</tr>
<tr>
<td>5.2.2 Disproportionation vs Combination</td>
<td>251</td>
</tr>
<tr>
<td>5.2.2.1 Model studies</td>
<td>252</td>
</tr>
<tr>
<td>5.2.2.1.1 Polystyrene and derivatives</td>
<td>253</td>
</tr>
<tr>
<td>5.2.2.1.2 Poly(alkyl methacrylates)</td>
<td>255</td>
</tr>
<tr>
<td>5.2.2.1.3 Poly(methacrylonitrile)</td>
<td>256</td>
</tr>
<tr>
<td>5.2.2.1.4 Polyethylene</td>
<td>258</td>
</tr>
<tr>
<td>5.2.2.2 Polymerization</td>
<td>258</td>
</tr>
<tr>
<td>5.2.2.2.1 Polystyrene</td>
<td>260</td>
</tr>
<tr>
<td>5.2.2.2.2 Poly(alkyl methacrylates)</td>
<td>261</td>
</tr>
<tr>
<td>5.2.2.2.3 Poly(methacrylonitrile)</td>
<td>262</td>
</tr>
<tr>
<td>5.2.2.2.4 Poly(alkyl acrylates)</td>
<td>262</td>
</tr>
<tr>
<td>5.2.2.2.5 Poly(acrylonitrile)</td>
<td>262</td>
</tr>
<tr>
<td>5.2.2.2.6 Poly(vinyl acetate)</td>
<td>263</td>
</tr>
<tr>
<td>5.2.2.2.7 Poly(vinyl chloride)</td>
<td>263</td>
</tr>
<tr>
<td>5.2.2.3 Summary</td>
<td>263</td>
</tr>
<tr>
<td>5.3 Inhibition and Retardation</td>
<td>264</td>
</tr>
</tbody>
</table>
5.3.1 'Stable' Radicals... 267
5.3.2 Oxygen... 268
5.3.3 Monomers... 269
5.3.4 Phenols... 270
5.3.5 Quinones.. 271
5.3.6 Phenothiazine.. 272
5.3.7 Nitrones, Nitro- and Nitroso-Compounds......................... 272
5.3.8 Transition Metal Salts.. 273

5.4 References.. 273
5.4 References.. 279

6 CHAIN TRANSFER.. 279
6.1 Introduction.. 279

6.2 Chain Transfer... 279

6.2.1 Measurement of Transfer Constants............................... 283
 6.2.1.1 Addition-fragmentation... 287
 6.2.1.2 Reversible chain transfer.. 288

6.2.2 Homolytic Substitution Chain Transfer Agents.................. 289
 6.2.2.1 Thiols... 290
 6.2.2.2 Disulfides... 291
 6.2.2.3 Monosulfides.. 292
 6.2.2.4 Halocarbons... 293
 6.2.2.5 Solvents and other reagents...................................... 294

6.2.3 Addition-Fragmentation Chain Transfer Agents................. 296
 6.2.3.1 Vinyl ethers... 298
 6.2.3.2 Allyl sulfides, sulfonates, halides, phosphonates, silanes 299
 6.2.3.3 Allyl peroxides... 303
 6.2.3.4 Macromonomers... 305
 6.2.3.5 Thionoester and related transfer agents.................... 308

6.2.4 Abstraction-Fragmentation Chain Transfer....................... 309

6.2.5 Catalytic Chain Transfer.. 310
 6.2.5.1 Mechanism... 310
 6.2.5.2 Catalysts... 313
 6.2.5.2.1 Cobalt porphyrin and related complexes.............. 313
 6.2.5.2.2 Cobalt (II) cobaloximes..................................... 313
 6.2.5.2.3 Cobalt (III) cobaloximes................................. 314
 6.2.5.2.4 Other catalysts.. 315
 6.2.5.3 Reaction conditions.. 315

6.2.6 Transfer to Monomer.. 316
 6.2.6.1 Styrene... 317
 6.2.6.2 Vinyl acetate... 318
 6.2.6.3 Vinyl chloride.. 318
 6.2.6.4 Allyl monomers.. 319
6.3 References .. 325

7 COPOLYMERIZATION .. 333

7.1 Introduction .. 333

7.2 Copolymer Depiction .. 335

7.3 Propagation in Statistical Copolymerization .. 335

7.3.1 Propagation Mechanisms in Copolymerization .. 337

7.3.1.1 Terminal model ... 337

7.3.1.2 Penultimate model ... 342

7.3.1.2.1 Model description .. 342

7.3.1.2.2 Remote substituent effects on radical addition .. 344

7.3.1.2.3 MMA-S copolymerization ... 347

7.3.1.2.4 Other copolymerizations ... 348

7.3.1.2.5 Origin of penultimate unit effects ... 349

7.3.1.3 Models involving monomer complexes .. 350

7.3.1.4 Copolymerization with depropagation ... 353

7.3.2 Chain Statistics ... 354

7.3.2.1 Binary copolymerization according to the terminal model 354

7.3.2.2 Binary copolymerization according to the penultimate model 355

7.3.2.3 Binary copolymerization according to other models ... 356

7.3.2.4 Terpolymerization .. 357

7.3.3 Estimation of Reactivity Ratios .. 359

7.3.3.1 Composition data ... 360

7.3.3.2 Monomer sequence distribution .. 362

7.3.4 Prediction of Reactivity Ratios .. 363

7.3.4.1 Q-e scheme .. 363

7.3.4.2 Patterns of reactivity scheme .. 365

7.4 Termination in Statistical Copolymerization ... 366

7.4.1 Chemical Control Model ... 366

7.4.2 Diffusion Control Models ... 368

7.4.3 Combination and Disproportionation during Copolymerization 370

7.4.3.1 Poly(methyl methacrylate-co-styrene) .. 371

7.4.3.2 Poly(methacrylonitrile-co-styrene) .. 373

7.4.3.3 Poly(butyl methacrylate-co-methacrylonitrile) ... 374

7.4.3.4 Poly(butyl methacrylate-co-methyl methacrylate) .. 374
xii

7.4.3.5 Poly(ethylene-co-methacrylonitrile) .. 374

7.5 Functional and End-Functional Polymers .. 374
 7.5.1 Functional initiators ... 375
 7.5.2 Functional transfer agents ... 377
 7.5.3 Thiol-ene Polymerization ... 378
 7.5.4 Functional monomers ... 379
 7.5.5 Functional inhibitors .. 381
 7.5.6 Compositional Heterogeneity in Functional Copolymers 381

7.6 Block & Graft Copolymerization ... 384
 7.6.1 Polymeric and Multifunctional Initiators .. 385
 7.6.2 Transformation Reactions .. 387
 7.6.3 Radiation-Induced Grafting Processes .. 389
 7.6.4 Radical-Induced Grafting Processes .. 390
 7.6.4.1 Maleic anhydride graft polyolefins .. 392
 7.6.4.2 Maleate ester and maleimide graft polyolefins 396
 7.6.4.3 (Meth)acrylate graft polyolefins ... 397
 7.6.4.4 Styrenic graft polyolefins ... 399
 7.6.4.5 Vinylsilane graft polyolefins .. 399
 7.6.4.6 Vinyl oxazoline graft polyolefins ... 400
 7.6.5 Polymerization and Copolymerization of Macromonomers 400

7.7 References .. 401

8 CONTROLLING POLYMERIZATION .. 413
 8.1 Introduction .. 413
 8.2 Controlling Structural Irregularities .. 414
 8.2.1 "Defect Structures" in Polystyrene ... 414
 8.2.2 "Defect Structures" in Poly(methyl methacrylate) 417
 8.2.3 "Defect Structures" in Poly(vinyl chloride) 420
 8.3 Controlling Propagation ... 421
 8.3.1 Organic Solvents and Water .. 425
 8.3.1.1 Homopolymerization ... 426
 8.3.1.2 Copolymerization ... 429
 8.3.2 Supercritical Carbon Dioxide ... 432
 8.3.3 Ionic liquids ... 432
 8.3.4 Lewis Acids and Inorganics .. 433
 8.3.4.1 Homopolymerization ... 433
 8.3.4.2 Copolymerization ... 435
 8.3.5 Template Polymerization .. 437
 8.3.5.1 Non-covalently bonded templates ... 437
 8.3.5.2 Covalently bonded templates ... 438
 8.3.6 Enzyme Mediated Polymerization ... 440
 8.3.7 Topological Radical Polymerization .. 441
8.4 References .. 443

9 LIVING RADICAL POLYMERIZATION ... 451

9.1 Introduction .. 451
 9.1.1 Living? Controlled? Mediated? ... 451
 9.1.2 Tests for Living (Radical) Polymerization... 452

9.2 Agents Providing Reversible Deactivation ... 454

9.3 Deactivation by Reversible Coupling and Unimolecular Activation 457
 9.3.1 Kinetics and Mechanism .. 457
 9.3.1.1 Initiators, inifers, initers .. 457
 9.3.1.2 Molecular weights and distributions ... 458
 9.3.1.3 Polymerization kinetics .. 460
 9.3.2 Sulfur-Centered Radical Mediated Polymerization ... 461
 9.3.2.1 Disulfide initiators .. 461
 9.3.2.2 Monosulfide initiators ... 463
 9.3.2.3 Monomers, mechanism, side reactions .. 465
 9.3.3 Selenium-Centered Radical Mediated Polymerization 466
 9.3.4 Carbon-Centered Radical Mediated Polymerization .. 467
 9.3.4.1 Monomers, mechanism, side reactions .. 469
 9.3.5 Reversible Addition-Fragmentation ... 470
 9.3.6 Nitroxide Mediated Polymerization ... 471
 9.3.6.1 Nitroxides ... 472
 9.3.6.2 Initiation ... 475
 9.3.6.3 Side reactions .. 478
 9.3.6.4 Rate enhancement .. 479
 9.3.6.5 Monomers .. 480
 9.3.6.5.1 Styrene, vinyl aromatics ... 480
 9.3.6.5.2 Acrylates .. 480
 9.3.6.5.3 Methacrylates ... 481
 9.3.6.5.4 Diene monomers .. 481
 9.3.6.6 Heterogeneous polymerization .. 481
 9.3.7 Other Oxygen-Centered Radical Mediated Polymerization 483
 9.3.8 Nitrogen-Centered Radical Mediated Polymerization 483
 9.3.9 Metal Complex-Mediated Radical Polymerization ... 484

9.4 Atom Transfer Radical Polymerization .. 486
 9.4.1 Initiators .. 488
 9.4.1.1 Molecular weights and distributions ... 490
 9.4.1.2 Reverse ATRP .. 491
 9.4.1.3 Initiator activity .. 492
 9.4.2 Catalysts ... 492
 9.4.2.1 Copper complexes ... 493
 9.4.2.2 Ruthenium complexes .. 495
 9.4.2.3 Iron complexes .. 496
9.4.2.4 Nickel complexes ... 496
9.4.3 Monomers and Reaction Conditions .. 497
 9.4.3.1 Solution polymerization .. 497
 9.4.3.2 Heterogeneous polymerization 497

9.5 Reversible Chain Transfer .. 498
 9.5.1 Molecular weights and distributions 499
 9.5.2 Macromonomer RAFT .. 501
 9.5.3 Thiocarbonylthio RAFT ... 502
 9.5.3.1 Mechanism .. 503
 9.5.3.2 RAFT agents .. 505
 9.5.3.3 RAFT agent synthesis .. 515
 9.5.3.4 Side Reactions ... 517
 9.5.3.5 Reaction conditions .. 518
 9.5.3.6 Heterogeneous polymerization 520
 9.5.4 Iodine-Transfer Polymerization ... 521
 9.5.5 Telluride-Mediated Polymerization 522
 9.5.6 Stibine-Mediated Polymerization ... 524

9.6 Living Radical Copolymerization ... 525
 9.6.1 Reactivity Ratios .. 525
 9.6.2 Gradient Copolymers .. 526
 9.6.3 NMP ... 527
 9.6.4 ATRP .. 528
 9.6.5 RAFT ... 529

9.7 End-Functional Polymers ... 531
 9.7.1 NMP ... 531
 9.7.1.1 ω-Functionalization ... 531
 9.7.1.2 α-Functionalization ... 533
 9.7.2 ATRP ... 533
 9.7.2.1 ω-Functionalization ... 533
 9.7.2.2 α-Functionalization ... 536
 9.7.3 RAFT ... 538
 9.7.3.1 ω-Functionalization ... 538
 9.7.3.2 α-Functionalization ... 539

9.8 Block Copolymers ... 540
 9.8.1 Direct Diblock Synthesis ... 541
 9.8.1.1 NMP .. 541
 9.8.1.2 ATRP .. 541
 9.8.1.3 RAFT Polymerization .. 543
 9.8.2 Transformation Reactions .. 544
 9.8.2.1 Second step NMP ... 545
 9.8.2.2 Second step ATRP ... 545
 9.8.2.3 Second step RAFT ... 546
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8.3</td>
<td>Triblock Copolymers</td>
<td>546</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Segmented Block Copolymers</td>
<td>547</td>
</tr>
<tr>
<td>9.9</td>
<td>Star Polymers</td>
<td>548</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Core first Star Synthesis</td>
<td>549</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Arm-first Star Synthesis</td>
<td>554</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Hyperbranched polymers</td>
<td>555</td>
</tr>
<tr>
<td>9.9.3.1</td>
<td>Self-condensing vinyl polymerization</td>
<td>555</td>
</tr>
<tr>
<td>9.9.3.2</td>
<td>Dendritic polymers</td>
<td>556</td>
</tr>
<tr>
<td>9.10</td>
<td>Graft Copolymers/Polymer Brushes</td>
<td>558</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Grafting Through - Copolymerization of Macromonomers</td>
<td>558</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Grafting From - Surface Initiated Polymerization</td>
<td>560</td>
</tr>
<tr>
<td>9.10.2.1</td>
<td>Grafting from polymer surfaces</td>
<td>561</td>
</tr>
<tr>
<td>9.10.2.2</td>
<td>Grafting from inorganic surfaces</td>
<td>562</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Grafting To - Use of End-Functional Polymers</td>
<td>563</td>
</tr>
<tr>
<td>9.11</td>
<td>Outlook for Living Radical Polymerization</td>
<td>564</td>
</tr>
<tr>
<td>9.12</td>
<td>References</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>ABBREVIATIONS</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td>SUBJECT INDEX</td>
<td>593</td>
</tr>
</tbody>
</table>
Index to Tables

Table 2.1 Carbon-Hydrogen and Heteroatom-Hydrogen Bond Dissociation
Energies (D in kJ mol\(^{-1}\)).. 15
Table 2.2 Relative Rate Constants and Regiospecificities for Addition of
Radicals to Halo-Olefins.. 17
Table 2.3 Relative Rate Constants for Reactions of Radicals with Alkyl-
Substituted Acrylate Esters ... 18
Table 2.4 Hammett \(\rho\) and \(\rho^+\) Parameters for Reactions of Radicals……………….. 22
Table 2.5 Specificity of Intramolecular Hydrogen Abstraction .. 32
Table 2.6 Bond Dissociation Energies.. 34
Table 2.7 Values of \(k_{id}/k_{ic}\) for the Cross-Reaction between Fluoromethyl
and Ethyl Radicals at 25 °C... 41
Table 2.8 Values of \(k_{id}/k_{ic}\) for t-Butyl Radicals at 25 °C ... 43
Table 3.1 Guide to Properties of Polymerization Initiators ... 66
Table 3.2 Selected Kinetic Data for Decomposition of Azo-Compounds 70
Table 3.3 Solvent Dependence of Rate Constants for AIBMe
Decomposition... 73
Table 3.4 Zero-Conversion Initiator Efficiency for AIBMe under Various
Reaction Conditions... 76
Table 3.5 Selected Kinetic Data for Decomposition of Peroxides... 80
Table 3.6 Kinetic Data for Reactions of Carbon-Centered Radicals 114
Table 3.7 Selected Rate Data for Reactions of Oxygen-Centered Radicals 119
Table 3.8 Specificity Observed in the Reactions of Oxygen-Centered
Radicals with Various Monomers at 60 °C... 120
Table 3.9 Kinetic Data for Reactions of \(\tau\)-Butoxy Radicals in Various
Solvents... 124
Table 3.10 Selected Rate Data for Reactions of Heteroatom-Centered
Radicals... 131
Table 3.11 Radical Trapping Agents for Studying Initiation................................. 134
Table 3.12 Application of MALDI-TOF or ESI Mass Spectrometry to
Polymers Prepared by Radical Polymerization... 144
Table 3.13 Radical Polymerizations Performed with Initiators Labeled with
Stable Isotopes... 147
Table 4.1 Tacticities of Selected Homopolymers... 175
Table 4.2 Temperature Dependence of Head vs Tail Addition for Fluoro-
olefin Monomers.. 181
Table 4.3 Microstructure of Poly(chloroprene) vs Temperature.............................. 185
Index to Tables

Table 4.4 Ring Sizes Formed in Polycopolymerization of Symmetrical 1,6-Diene Monomers ... 190
Table 4.5 Extent of Ring-opening During Polymerizations of 2-Methylene-1,3-dioxolane and Related Species 200
Table 4.6 Extent of Ring-Opening During Polymerizations of 4-Methylene-1,3-dioxolane and 2-Methylene-1,4-dioxane Derivatives 203
Table 4.7 Extent of Ring-Opening During Polymerizations of 2-Methylenetetrahydrofuran and Related Compounds 204
Table 4.8 Extent of Double Ring-Opening During Polymerization of Polycyclic Monomers ... 207
Table 4.9 Structures Formed by Backbiting in Ethylene Copolymerization .. 210
Table 4.10 Heats of Polymerization for Selected Monomers 215
Table 4.11 Kinetic Parameters for Propagation in Selected Radical Polymerizations in Bulk Monomer .. 219
Table 4.12 Rate Constants and Arrhenius Parameters for Propagation of Monomers Compared with Rate Constants for Addition of Small Radicals ... 221
Table 5.1 Parameters Characterizing Chain Length Dependence of Termination Rate Coefficients in Radical Polymerization of Common Monomers .. 247
Table 5.2 Values of k_{d}/k_{c} for Polystyryl Radical Model Systems ... 254
Table 5.3 Values of k_{d}/k_{c} for Methacrylate Ester Model Systems ... 255
Table 5.4 Values of k_{d}/k_{c} for Reactions involving Cyanoisopropyl Radicals ... 257
Table 5.5 Determinations of k_{d}/k_{c} for MMA Polymerization ... 261
Table 5.6 Kinetic Data for Various Inhibitors with Some Common Monomers ... 265
Table 5.7 Absolute Rate Constants for the Reaction of Carbon-Centered Radicals with Some Common Inhibitors 266
Table 6.1 Chain Length Dependence of Transfer Constants (C_n) ... 283
Table 6.2 Transfer Constants (60 °C, bulk) for Thiols (RSH) with Various Monomers ... 290
Table 6.3 Transfer Constants for Disulfides (R-S-S-R) With Various Monomers ... 292
Table 6.4 Transfer Constants (80 °C, bulk) for Halocarbons with Various Monomers ... 293
Table 6.5 Transfer Constants (60 °C, bulk) for Selected Solvents and Additives with Various Monomers ... 295
Table 6.6 Transfer Constants for Vinyl Ethers at 60 °C ... 299
Table 6.7 Transfer Constants for Allyl Sulfoxides at 60 °C ... 300
Table 6.8 Transfer Constants for Allyl Sulfones and Sulfoxides at 60 °C ... 302
Table 6.9 Transfer Constants for Allyl Halides, Phosphonates, Silanes and Stannanes at 60 °C ... 303
Index to Tables

Table 6.10 Transfer Constants for Allyl Peroxide and Related Transfer Agents at 60 °C .. 304
Table 6.11 Transfer Constants for Macromonomers .. 307
Table 6.12 Transfer Constants for Thionoester and Related Transfer Agents at 60 °C .. 309
Table 6.13 Transfer Constants for Cobalt Complexes ... 316
Table 6.14 Transfer Constants to Monomer ... 317
Table 6.15 Transfer Constants to Polymer ... 320
Table 7.1 Reactivity Ratios for Some Common Monomer Pairs 339
Table 7.2 Relative Rates for Addition of Substituted Propyl Radicals to AN and S .. 345
Table 7.3 Relative Rates for Addition of Substituted Methyl Radicals (R 3 R 2 R 1 C•) to MMA and S at ~25 °C .. 346
Table 7.4 Rate Constants (295 K) for Addition of Substituted Propyl Radicals to (Meth)acrylate Esters .. 347
Table 7.5 Implicit Penultimate Model Reactivity Ratios .. 348
Table 7.6 List of Donor and Acceptor Monomers ... 351
Table 7.7 Q-e and Patterns Parameters for Some Common Monomers 365
Table 7.8 Identity of Chain End Units Involved in Radical-Radical Termination in MMA-S Copolymerization .. 372
Table 8.1 Solvent Effect on Homopropagation Rate Constants for VAc at 30°C .. 427
Table 8.2 Effect of Solvent on Tacticity of Poly(alkyl methacrylate) at -40 °C 428
Table 8.3 Effect of Amines on Tacticity of Poly(methacrylic acid) at 60 °C 429
Table 8.4 Solvent Dependence of Reactivity Ratios for MMA-MAA Copolymerization at 70°C .. 430
Table 8.5 Solvent Dependence of Penultimate Model Reactivity Ratios for S-AN Copolymerization at 60°C .. 430
Table 8.6 Effect of Lewis Acids on Tacticity of Polymers Formed in High Conversion Radical Polymerizations at 60 °C .. 435
Table 9.1 Five-Membered Ring Nitroxides for NMP ... 473
Table 9.2 Six-Membered Ring Nitroxides for NMP ... 474
Table 9.3 Open-Chain Nitroxides for NMP ... 475
Table 9.4 Seven-Membered Ring Nitroxides for NMP .. 475
Table 9.5 Structures of Ligands for Copper Based ATRP Catalysts 494
Table 9.6 Structures of Ruthenium Complexes Used as ATRP Catalysts 495
Table 9.7 Structures of Iron Complexes Used as ATRP Catalysts 496
Table 9.8 Structures of Nickel Complexes Used as ATRP Catalysts 496
Table 9.9 Block Copolymers Prepared by Macromonomer RAFT Polymerization 502
Table 9.10 Tertiary Dithiobenzoate RAFT Agents .. 508
Table 9.11 Other Aromatic Dithioester RAFT Agents .. 509
Index to Tables

Table 9.12 Primary and Secondary Dithiobenzoate RAFT Agents.......................510
Table 9.13 Bis-RAFT Agents...511
Table 9.14 Dithioacetate and Dithiophenylacetate RAFT Agents.........................511
Table 9.15 Symmetrical Thiocarbonate RAFT Agents...512
Table 9.16 Non-Symmetrical Thiocarbonate RAFT Agents.................................512
Table 9.17 Xanthate RAFT Agents...513
Table 9.18 Dithiocarbamate RAFT Agents...514
Table 9.19 Initiators for Telluride-Mediated Polymerization.................................524
Table 9.20 Statistical/Gradient Copolymers Synthesized by NMP..........................528
Table 9.21 Statistical/Gradient Copolymers Synthesized by ATRP..........................529
Table 9.22 Statistical/Gradient Copolymers Synthesized by RAFT
 Polymerization..529
Table 9.23 Methods for End Group Transformation of Polymers Formed
 by NMP..532
Table 9.24 Methods for End Group Transformation of Polymers Formed
 by ATRP by Addition or Addition-Fragmentation.................................534
Table 9.25 End Group Transformations for Polymers Formed by ATRP.................535
Table 9.26 Methods for End Group Removal from Polymers Formed by
 RAFT Polymerization...539
Table 9.27 Diblock Copolymers Prepared by ATRP...543
Table 9.28 Diblock Copolymers Prepared by RAFT Polymerization.......................543
Table 9.29 Star Precursors for NMP..550
Table 9.30 Star Precursors for ATRP..550
Table 9.31 Star Precursors for RAFT Polymerization..551
Index to Figures

Figure 1.1 Publication rate of papers on radical polymerization and on living, controlled or mediated radical polymerization for period 1975-2002 based on SciFinder™ search. ... 7
Figure 2.1 Transition state for methyl radical addition to ethylene. Geometric parameters are from ab initio calculation with QCISD(T)/6-31GT(d) basis set .. 20
Figure 2.2 Effect of polar factors on regiospecificity of radical addition ... 22
Figure 2.3 Relative rate constants for addition of alkyl radicals to fumarodinitrile (k_f) and methyl α-chloroacrylate (k_a) as a function of temperature ... 25
Figure 2.4 SOMO-HOMO and SOMO-LUMO orbital interaction diagrams 27
Figure 2.5 Schematic state correlation diagram for free radical addition to a carbon-carbon double bond showing configuration energies as a function of the reaction coordinate ... 28
Figure 2.6 Transition state for hydrogen atom abstraction .. 29
Figure 2.7 Predicted order of reactivity of X-H compounds .. 30
Figure 2.8 Preferred site of attack in hydrogen abstraction by various radicals .. 32
Figure 2.9 Relative reactivity per hydrogen atom of indicated site towards t-butoxy radicals .. 33
Figure 2.10 Dependence of abstraction/addition ratio on nucleophilicity for oxygen-centered radicals .. 35
Figure 2.11 Dependence of abstraction/addition ratio on nucleophilicity for carbon-centered radicals .. 35
Figure 2.12 Trend in k_f/k_a for radicals (CH_3)_3C(•)-X ... 42
Figure 2.13 Temperature dependence of k_f/k_a values for t-butyl radicals with dodecane or 3-methyl-3-pentanol as solvent .. 43
Figure 3.1 Temperature dependence of rate constants for reactions of cumyloxy radicals (a) β-scission to methyl radicals (b) abstraction from cumene and (c) addition to styrene. Data are an extrapolation based on literature Arrhenius parameters .. 56
Figure 3.2 Jablonski diagram describing photoexcitation process .. 59
Figure 3.3 Cumulative and instantaneous initiator efficiency (f) of AIBN as initiator in S polymerization as a function of monomer conversion 76
Figure 3.4 Relative reactivity of indicated site towards t-butoxy radicals for allyl methacrylate and allyl acrylate .. 122
Index to Tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.5</td>
<td>Relative reactivity of indicated site towards t-butoxy radicals for BMA.</td>
<td>123</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Relative rate constants for β-scission of t-alkoxy radicals at 60 °C.</td>
<td>124</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Representation of meso (m) and racemic (r) dyads with polymer chains.</td>
<td>169</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Representation of meso (m) and racemic (r) diastereoisomers of low molecular weight compounds.</td>
<td>170</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Representation of mrrmr heptad.</td>
<td>170</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Dependence of K_{eq} on temperature for selected monomers.</td>
<td>214</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Experimental molecular weight distribution obtained by GPC and its first derivative with respect to chain length for PS prepared by PLP.</td>
<td>218</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>(a) Number and (b) GPC distributions for two polymers both with $X_n=100$.</td>
<td>241</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Dispersity (D) as a function of X_n for polymers formed by (a) disproportionation or chain transfer and (b) combination.</td>
<td>242</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Conversion-time profile for bulk MMA polymerization at 50 °C with AIBN initiator illustrating the three conversion regimes.</td>
<td>243</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Chain length dependence of k_{ij} predicted by (a) the geometric mean or (b) the harmonic mean approximation.</td>
<td>246</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Chain length dependence of k_{ij} predicted by the Smoluchowski mean with $\alpha=0.5$ and $k_w=10^9$ and the geometric mean with $\alpha=0.2$ and $k_w=10^8$; i and j are the lengths of the reacting chains.</td>
<td>248</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>‘Mayo plots’ in which the calculated limiting slopes, ‘last 10% slopes’ and ‘top 20% slopes’ are graphed as a function of $[T]/[M]$.</td>
<td>285</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Plot of the instantaneous copolymer composition (F_A) vs monomer feed composition (f_A) for the situation where (a) $r_A=r_B=1.0$, (b) $r_A=r_B=0.5$, (c) $r_A=r_B=0.01$, (d) $r_A=0.5$, $r_B=2.0$.</td>
<td>340</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Chain end terminology.</td>
<td>344</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>Molecular weight distributions for HEA:BA:S copolymer prepared with butanethiol chain transfer agent.</td>
<td>382</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>Molecular weight distributions for HEA:BA:S copolymer prepared with butanethiol chain transfer agent.</td>
<td>383</td>
</tr>
<tr>
<td>Figure 9.1</td>
<td>Predicted evolution of molecular weight with monomer conversion for a conventional radical polymerization with constant rate of initiation and a living polymerization.</td>
<td>453</td>
</tr>
<tr>
<td>Figure 9.2</td>
<td>(a) Number and (b) GPC distributions for three polymers each with $X_n=100$.</td>
<td>454</td>
</tr>
<tr>
<td>Figure 9.3</td>
<td>General description of macromonomer and thiocarbonylthio RAFT agents.</td>
<td>501</td>
</tr>
<tr>
<td>Figure 9.4</td>
<td>Effect of Z substituent on effectiveness of RAFT agents.</td>
<td>505</td>
</tr>
<tr>
<td>Figure 9.5</td>
<td>Canonical forms of thiocarbonylthio compounds.</td>
<td>506</td>
</tr>
</tbody>
</table>
Index to Figures

Figure 9.6 Effect of R substituent on effectiveness of RAFT agents.507
Figure 9.7 Evolution of molecular weight and dispersity with conversion
for MMA polymerizations in the presence of RAFT agent.519
Figure 9.8 Comparison of molecular weight distributions for a
conventional and RAFT polymerization ...520
Figure 9.9 General description of organochalcogenide transfer agents524
Figure 9.10 General description of organostibine transfer agents.................525
Figure 9.11 Star Architectures ...548
Figure 9.12 GPC distributions obtained during bulk thermal polymerization
of styrene at 110 °C with tetrafunctional RAFT agents553
In recent years, the study of radical polymerization has gone through something of a renaissance. This has seen significant changes in our understanding of the area and has led to major advances in our ability to control and predict the outcome of polymerization processes. Two major factors may be judged responsible for bringing this about and for spurring an intensified interest in all aspects of radical chemistry:

Firstly, the classical theories on radical reactivity and polymerization mechanism do not adequately explain the rate and specificity of simple radical reactions. As a consequence, they can not be used to predict the manner in which polymerization rate parameters and details of polymer microstructure depend on reaction conditions, conversion and molecular weight distribution.

Secondly, new techniques have been developed which allow a more detailed characterization of both polymer microstructures and the kinetics and mechanism of polymerizations. This has allowed mechanism-structure-property relationships to be more rigorously established.

The new knowledge and understanding of radical processes has resulted in new polymer structures and in new routes to established materials; many with commercial significance. For example, radical polymerization is now used in the production of block copolymers, narrow polydispersity homopolymers, and other materials of controlled architecture that were previously available only by more demanding routes. These commercial developments have added to the resurgence of studies on radical polymerization.

We believe it is now timely to review the recent developments in radical polymerization placing particular emphasis on the organic and physical-organic chemistry of the polymerization process. In this book we critically evaluate the findings of the last few years, where necessary reinterpreting earlier work in the light of these ideas, and point to the areas where current and future research is being directed. The overall aim is to provide a framework for further extending our understanding of free radical polymerization and create a definable link between synthesis conditions and polymer structure and properties. The end result should be polymers with predictable and reproducible properties.

The book commences with a general introduction outlining the basic concepts. This is followed by a chapter on radical reactions that is intended to lay the theoretical ground-work for the succeeding chapters on initiation, propagation, and termination. Because of its importance, radical copolymerization is treated in a separate chapter. We then consider some of the implications of these chapters by
discussing the prospects for controlling the polymerization process and structure-property relationships. In each chapter we describe some of the techniques that have been employed to characterize polymers and polymerizations and which have led to breakthroughs in our understanding of radical polymerization. Emphasis is placed on recent developments.

This book will be of major interest to researchers in industry and in academic institutions as a reference source on the factors which control radical polymerization and as an aid in designing polymer syntheses. It is also intended to serve as a text for graduate students in the broad area of polymer chemistry. The book places an emphasis on reaction mechanisms and the organic chemistry of polymerization. It also ties in developments in polymerization kinetics and physical chemistry of the systems to provide a complete picture of this most important subject.

Graeme Moad
David H Solomon
Preface to the Second Edition

In the ten years since the first edition appeared, the *renaissance* in Radical Polymerization has continued and gained momentum. The period has seen the literature with respect to controlled and, in particular, living radical polymerization expand dramatically. The end of 1995, saw the first reports on atom transfer radical polymerization (ATRP) and in 1998 polymerization with reversible addition fragmentation chain transfer (RAFT) was introduced. The period has also seen substantial development in nitroxide-mediated polymerization (NMP) first reported in 1987 and discussed in the first edition. A new generation of control agents has added greater versatility and new applications. The area of living radical polymerization is now responsible for a very substantial fraction of the papers in the field. In this edition, we devote a new chapter to living radical polymerization.

The initial thrust of work in the area of living radical polymerization was aimed at capitalizing on the versatility of radical polymerization with respect to reaction conditions and the greater range of suitable monomers as compared to anionic systems. Anionic polymerizations were seen as the standard. This has now changed, and living radical polymerizations are now seen as offering polymers with unique compositions and properties not achievable with other methodologies. Living radical polymerization has also been combined with other processes and mechanisms to give structures and architectures that were not previously thought possible. The developments have many applications particularly in the emerging areas of electronics, biotechnology and nanotechnology.

A small change has been made to the title and the text of this edition to reflect the current IUPAC recommendation that radicals are no longer ‘free’. Of the classical steps of a radical polymerization, while there remains some room for improvement, it can be stated that we now have methodologies that give control over the termination and initiation steps to the extent that specific structures, molecular weight distributions, and architectures can be confidently obtained. The remaining ‘holy grail’ in the field of radical polymerization is control over the stereochemistry and regiospecificity in the propagation step. Although some small steps have been taken towards achieving this goal, much remains to be done.

The last ten years have also seen significant advances in other areas of radical polymerization. Chapters one through eight have been updated and many new references added to reflect these developments.

Graeme Moad
David H Solomon

xxv
We gratefully acknowledge the contribution of the following for their assistance in the preparation and proof reading of the manuscript.

Dr Agnes Ho
Dr Catherine L. Moad
Dr Almar Postma
Dr Greg Qiao
Dr Tiziana Russo

In addition, we thank again those who contributed to the production of the first edition.

We also thank Max McMaster of McMaster Indexing for his efforts in producing the index for this volume.